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Sensing capabilities as tiltmeter presented by a setup realized with two identical coaxial cylindrical coils, in which a small 
permanent magnet is levitated in between, are investigated. As stabilizing pieces two pyrolitic graphite sheets are used, not to 
contradict Earshaw’s theorem which prohibits all kind of stable levitation in fields having a magnitude inversely proportional to 
the squared distance.  The flux density associated to the coils is analytically evaluated, to be further used to derive the magnetic 
force needed to balance the force of gravity when levitation occurs. The used approximation is that the helical conductor 
presented by a coil is assumed to be an arrangement of aligned tangent circular loops. Equilibrium point coordinates of the 
levitated magnet are evaluated for tilt angles varying from horizontal to vertical positions. Conversion characteristics, stability 
functions and sensitivities for this possible kind of tiltmeter are obtained and discussed. 
 

1. INTRODUCTION 

Passive levitation occurring in time-invariant magnetic 
fields (either produced by permanent magnets or by dc 
supplied electromagnets) presents essentially two main 
aspects [1].  

First, levitation of a permanent magnet embedded in such 
a field always requires the presence of a diamagnetic 
material in its close proximity to stabilize equilibrium. 
Indeed, Earnshaw’s theorem states that no stable equilibrium is 
achievable within a system of bodies interacting through 
fields inversely proportional to distance squared magnitudes. 
The introduced diamagnetic body provides the permanent 
magnet with the adaptive restoring forces necessary to 
counteract any small displacement around the equilibrium 
point achieving thus stability. Variants with multiple 
simultaneously levitated permanent magnets are also possible 
in association with stabilizing diamagnetic pieces, too. In 
this case, the magnetostatics problem of finding each magnets’ 
equilibrium point is more complex since the levitated bodies 
are mutually interacting one with the other [2]. 

Second kind of levitation is the levitation of diamagnetic 
bodies themselves. Inherently stable, the suspension occurs 
when the force of gravity is balanced by the diamagnetic 
forces developed by the inhomogeneity of the magnetic 
field in which the suspended body is introduced. That is to 
say that diamagnetic bodies are repelled from the regions 
where the magnetic field is more intense. Although weak 
the diamagnetic force may balance gravity in the case of 
small bodies [3–5]. 

Levitation structures address a large array of technical 
applications, to mention sensing (tiltmeters, seismometers), 
micro-electromechanical systems (MEMS), magnetic 
bearings, micromotors, but even energy harvesting devices 
etc. [6–11]. 

The levitator under scrutiny [12], belonging to the first 
enumerated category, presents several sensing applications, 
among which we are focusing in this paper on inclination 
sensing capabilities, only. The paper is organized as follows:  

• Section 2 is dedicated to problem description 
(geometry, materials, balance of forces, equilibrium 
and stability). 
• Section 3 presents the analytical model used to 
compute the magnetic force acting on the levitated 
magnet. 
• Section 4 is dedicated to simulating the performance 
of a possible tiltmeter based on the proposed levitation 
structure (conversion characteristics, stability functions, 
sensitivities). 
• Section 5 is dedicated to conclusions and discussing 
the obtained results. 

2. PROBLEM DESCRIPTION 

2.1. INCLINED SYMMETRICAL COAXIAL DC COIL 
LEVITATION SYSTEM 

OF A SMALL PERMANENT MAGNET 
USING STABILIZING DIAMAGNETIC SHEETS.  

Levitator’s global structure is depicted in Fig. 1. Two 
identical coaxial cylindrical coils (I and II) are aligned to 
the z-axis of a Cartesian system of coordinates, whose 
center is at mid distance from the right and left ends of Coil 
I and Coil II, respectively. Distance D is measured from the 
left and right ends of the same respective solenoids. The 
coils are dc supplied with the same current of intensity I0. 
The inner and outer radii of the coils, r1 and r2, are considered 
with respect to the wire conductor centers. For simplicity 
reasons, aiming to further allow a more convenient analytical 
computation of the flux density, a matrix arrangement of 
the winding conductor is considered. Zone A from Fig. 1 is 
zoomed in, as shown in Fig. 2, where the assumed 
approximation is more visible. There are Nz rows and Nx 
columns of the circular section wires, all tangent to each other, 
constituting the windings’ model. The coils’ length is L, 
also measured from the axis of the left and right columns 
conductors. 
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Fig. 1 – Inclined passive levitation structure of a small permanent magnet 
(PM) (Tilt angle is α.) Two identical coaxial cylindrical coils (I and II), 

in which runs a dc current, produce the magnetic field in which levitation 
state is achieved. Stabilization at the equilibrium point is ensured 

by two pyrolitic graphite sheets (PG) placed perpendicular to the coils’ axis. 
The origin of the Cartesian frame of reference origin (O) 

lies at mid distance on the axis of the coils. 

 
Fig. 2 – Detailed view on zone A, shown in Fig. 1 of a cross section 

of Coil I winding (the same as for Coil II). Position of the turns 
within the winding is idealized to a matrix disposition with Nz rows and Nx 

columns, circumscribed to a rectangle. 

Returning to Fig. 1, it can be noticed the small Nd-Fe-B 
permanent magnet (PM) which levitates as a result of the 
magnetic forces developed by the coils, at the point they 
cancel out the force of gravity, i.e. (x0, y0). According to 
Earnshaws’s theorem one or two diamagnetic plates made 
of pyrolitic graphite (PG) are necessary to stabilize 
levitation. When tilting the whole structure with angle α, it 
can be assumed that the mounting part of the PG plates is 
allowed to move freely with the levitated PM to achieve 
equilibrium. A more detailed view of zone B is provided in 
Fig. 3, showing the disc PM radius R, its thickness l and the 
equal separation s from the two PG sheets. Another 
approximation, also used in [13], assumes that the PM disc 
is parallel to the PG plates and all with the yz-plane. In both 
Figs. 1 and  3, m denotes the magnetic moment vector of 
the PM and Bx(x, y) the flux density x-vector component, 
the sole to develop magnetic forces along the x- and z- axes, 
as it will be proven in Section 2. As a result of the assumption 
made, the magnetic moment m is also parallel to the x-axis. 

It can be also proven that any of the PG plates can be 
removed, case in which the equilibrium point slightly shifts 
toward the remaining plate. Thus, single plate structures are 
also possible. 

 
Fig. 3 – Detailed view on zone B, shown in Fig. 1. Two pyrolitic graphite 

sheets stabilize PM’s levitation along x-axis. Equal separation from the PG 
sheets s is considered on each side of the PM of radius R and thickness l. 

The PM’s magnetic moment is m and Bx(x, z) the local vector of flux 
density x-component of the magnetic field associated to the coils. 

2.2. BALANCE OF FORCES. 
EQUILIBRIUM STABILITY 

As mentioned in the previous Subsection 2.1., the force 
Fm developed in the time-invariant magnetic field produced 
by the coils must balance the PM force of gravity G in order 
to achieve levitation, as shown in Fig. 4. In accordance with 
Earnshaw’s theorem, an elementary displacement around 
the equilibrium point must be compensated by an adaptive 
external force, namely the diamagnetic forces generated by 
the presence of the PG plates. If two symmetrically placed 
plates are considered, the diamagnetic forces have no influence 
in establishing the equilibrium point position. Indeed, these 
forces have equal magnitude, but act in opposite directions. 
Therefore, they cancel each other out. For the sake of 
simplicity, in Fig. 4 the PG plates are not considered, neither 
are the corresponding diamagnetic forces that would act on 
the floating PM.  

A possible global approach may start from the total 
potential energy possessed by the PM in gravitational and 
magnetic fields combined [14]: 

 U(x, y, z) = – m ·B(x, y, z) – G h(x, z), (1), 

where the force of gravity G = γVg, γ is the mass density of 
the material, V = π R2 l is its volume and g is the 
gravitational acceleration magnitude. Elementary geometric 
and trigonometric calculations provide the height as function 
of x and z coordinates ( , ) cos sinh x z z x= α − α  corresponding 
to the center of mass with respect to an arbitrary reference, 
e.g. the origin of the reference frame, as shown for the 
equilibrium point in Fig. 4. 

Therefore, with (1), we get [14] 

 U(x, 0, z) = – m Bx(x, 0, z) – G (z cosα – x sinα). (2) 

By taking the negative gradient of U, given by (2), the 
total force acting on the PM becomes 
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Fig. 4 – Balance of forces acting on the PM at point (x0, z0). The force 

of gravity G is balanced by the magnetic force Fm, all being considered 
at the PM’s center of mass which height at the equilibrium point h(x0, z0) 

is referenced from the origin of the system of coordinates. 
Pyrolitic graphite plates (PG) are not shown. 
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where i and k are the x- and z-axes unit vectors, respectively. 
On components, from (3), the condition Ftotal = 0 produces 
a system of equations [14] 
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Note that, by symmetry reasons, the equilibrium point is 
expected to belong to the xz- plane (for y = 0). For α = 0, it 
is obvious that x0 = 0 and z0 is only obtained by solving the 
equation 
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In order to be stable, the following quantities termed 
stability functions (discriminants) must be simultaneously 
positive [2, 12, 14]: 
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With (1), this reduces (up to a factor) to similar conditions 

imposed on the second derivative of Bx, namely [2, 12, 14] 
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The negative value of a stability function, evaluated at 
the equilibrium point, will indicate, according to Earnshaw’s 
theorem, the necessity of introducing stabilization piece(s) 
along the respective axis direction (one or two PG sheets 
perpendicular to the axis along which stabilization is 
needed). The introduction of two stabilizing PG sheets 
leads to the addition of the following term to the stability 
function (value taken at the equilibrium point) [2, 12, 14], 
called the diamagnetic influence factor: 
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where χ  is the magnetic susceptibility absolute value of 
pyrolitic graphite (one of the greatest achievable values at 
room temperature along a direction perpendicular to the 
sheets) and μ0 is the vacuum permeability (see Fig. 3). Note 
that, according to [15], for (9) to be valid, the distances s, l 
and the thickness of the PG sheets are such that the PM’s 
images are fully contained within the sheets volume. 

Magnetic moment of the levitated PM is given in [14] as 

 m =Br V / μ0, (10) 

where Br is the remanence of the PM Nd-Fe-B material. 

3. ANALYTICAL MODEL FOR FORCE 
AND STABILITY FUNCTIONS COMPUTATION 

As it was first suggested in Fig. 2, a matrix of circular 
section wires will be considered [12]. Generally, obtaining 
an analytical formula for the B-fields in the case of a coil is 
not an easy undertaking, being mostly carried out numerically 
[16, 17]. In our approach, the aforementioned approximation 
will provide an analytical formula for the flux density, 
allowing thus to perform the derivatives appearing in (4), 
(5), (6) and (8).  

The flux density component Bx has two terms each 
corresponding to one of the coils, namely 

 I, II,( , ) ( , ) ( , )x x xB x z B x z B x z= + . (11) 

Moreover, each term from (10) is the superposition of the 
effects of the corresponding circular loops of indices (i, j) 
belonging to each coil matrix (I or II) [12], as depicted in 
Fig. 2. 
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where 
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In (13), K and E are the complete elliptic integrals of the 
first and second kind, respectively, and all the appearing 
geometrical parameters are shown in Fig. 2. 

All the partial derivatives from (4), (5), (6) and (8) can be 
now obtained analytically with (11), (12) and (13). 

4. SIMULATION RESULTS 

In order to assess the possible use of the device shown in 
Fig. 1 as a tiltmeter, a numerical illustrative simulation is 
proposed. Simulation parameters are organized in Table 1. 

Table 1 
Parameters used for simulation 

Parameter Value 
Intensity of the current supplying the coils I0 = 9 A 
Number of conductors along x-axis (number of 
turns per layer) Nx = 12 

Number of conductors along z-axis (number of coil 
layers) Nz = 10 

Conductor diameter (standardized value) d = 1.29 mm 
Coils’ inner radius r1 = 50 mm  
Coils’ outer radius a r2 = 61.61 mm  
Coils’ length a L = 14.19 mm 
Distance D (see Figs. 1 and 2) D = 50 mm 
Levitated PM radius R = 2.5 mm 
Levitated PM thickness l = 1 mm 
Remanence of the PM material (grade N45) b Br = 1.3 T 

PM magnetic moment magnitude c m = 0.0203 
A⋅m2 

Mass density of Nd-Fe-B used for the PM γ = 7923 kg/m3 
Separation between PM and PG plates s = 1.5 mm 

PG perpendicular susceptibility value 545 10−χ = − ⋅  
a There values are not independent; they result from d and Nz or Nx. 
b Remanence is slightly diminished to take into account self-demagnetization of 
the cylindrical PM in open-loop, as considered in [2, 14]. 
c  This value is not independent; it results from R, l and Br. 

Solution of the system of nonlinear equations (4) is 
obtained using a general-purpose mathematics package, 
comprising a symbolic calculation module capable to carry 
out the first and second derivatives computation necessary 
in (4), (5), (6) and (8). Next, the system of equations (4) or 
equations (5) and (6), for the particular values α = 0 and 
α = π / 2, respectively, are solved numerically. An angular 
displacement in equal steps of 5° between these two limits 
(horizontal and vertical positions) gives the equilibrium 
point coordinates shown in Table 2. (y0 = 0 as a result of the 
symmetry of the device with respect to xz-plane in which 
levitation occurs). 

Table 2 

Simulation results for angular displacement 

Tilt angle [degrees] x0 [mm] z0 [mm] 
0 0.00 19.91 
5 0.74 19.87 
10 1.48 19.74 
15 2.22 19.53 
20 2.96 19.23 
25 3.71 18.85 
30 4.46 18.37 
35 5.21 17.81 
40 5.98 17.15 
45 6.76 16.40 
50 7.56 15.54 
55 8.37 14.56 
60 9.22 13.45 
65 10.10 12.18 
70 11.03 10.71 
75 12.02 8.97 
80 13.07 6.82 
85 14.14 3.98 
90 14.75 0.00 

For a more convenient interpretation of the data contained 
in Table 2, a plot of the two equilibrium point coordinates 
is shown in Fig. 5.  

Validity of the obtained result can be assessed by 
calculating the stability function values corresponding to 
the equilibrium points coordinates, as shown in Table 3, 
and plotted in Fig. 6. 

Table 3 

Simulation results for stability functions along the three axes 

Tilt angle 
(degrees) Dx [J/m2] Dy [J/m2] Dz [J/m2] Dx+C 

[J/m2] 
0 – 0.180 0.077 0.104 0.255 
5 – 0.180 0.077 0.104 0.255 

10 – 0.179 0.076 0.103 0.256 
15 – 0.177 0.075 0.102 0.258 
20 – 0.175 0.075 0.101 0.260 
25 – 0.172 0.073 0.100 0.263 
30 – 0.168 0.072 0.098 0.267 
35 – 0.164 0.070 0.096 0.271 
40 – 0.158 0.068 0.094 0.277 
45 – 0.152 0.066 0.091 0.283 
50 – 0.145 0.063 0.088 0.290 
55 – 0.137 0.060 0.085 0.299 
60 – 0.127 0.057 0.082 0.308 
65 – 0.117 0.053 0.079 0.318 
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(continuated) 
70 – 0.106 0.049 0.075 0.329 
75 – 0.094 0.044 0.071 0.341 
80 – 0.081 0.039 0.068 0.354 
85 – 0.068 0.033 0.064 0.367 
90 – 0.061 0.030 0.063 0.375 

 

 
Fig. 5 – Equilibrium point coordinates x0 and z0 vs. tilt angle 

(interpolated plots). 

 
Fig. 6 – Stability functions at equilibrium point coordinates x0 and z0 vs. 

tilt angle (interpolated plots). 

 
Fig. 7 – Sensitivities Sx and Sz vs. tilt angle (interpolated plots). 

As expected, the negative values of Dx obtained for all 
tilt angles shown in Table 3, prove the necessity of 
introducing stabilizing PG sheets. With (9) and the 

corresponding values taken from Table 1, we get the 
diamagnetic influence factor C = 0.435 J/m2. The last column 
in Table 3 corresponds to the sum Dx + C > 0, showing that 
stable levitation has been achieved in all cases. 

An estimation of the feasibility for using this type of 
levitator as a tiltmeter is provided by the sensitivities presented 
by the sensor, regarded as a single input (the tilt angle α), 
but a two output device x0 and z0: 

                          0d
dx

x
S =

α
 and 0d

.
dz

z
S =

α
 (14) 

The two sensitivities plots are shown in Fig. 7. 

5. CONCLUSIONS 

A possible tiltmeter based on the presented levitator can 
operate in a non-magnetic environment. (All ferromagnetic 
pieces and other permanent magnets are sufficiently distant 
from the levitator.) Validity of the adopted model resides in 
two initially expected particular results. Firstly, for the 
horizontal position (α = 0) x0 = 0 and for the vertical one 
(α = π/2) z0 = 0. Secondly, in all the cases the stability 
function value Dx resulted negative, proving thus the 
necessity of introducing at least one stabilizing PG sheet as 
shown in Table 3 or Fig. 6. This behavior was also expected 
from the very beginning of the study. 

An important characteristic of a tiltmeter operating on 
the principle of the proposed levitator is redundancy, which 
is beneficial in any measurement device. Information can 
therefore be extracted from two output conversion 
characteristics, for example, those shown in Fig. 5. 
Interestingly, the two conversion characteristics present 
significantly different sensitivities for the two output values 
x0 and z0. By examining the graph of x0 shown in Fig. 5, it 
turns out that it is quite linear (up to about 85° tilt angle), 
fact reflected in an approximately constant sensitivity Sx 
(about 0.16 mm/deg.), as one can notice in Fig. 7. 
Unfortunately, the displacement with tilt angle is less 
pronounced along x-axis as it is for the z-axis, for which 
sensitivity Sz has a less convenient variation. 

Other possible directions for using the presented levitator 
in sensing may be found for the horizontal variant (α = 0). 
First, as a linear displacement sensor, when z0 is function of 
the distance between the coils (variation of distance 
parameter D). Second, as a current intensity measuring 
device, when z0 is function of the current carried by the 
coils (variation of parameter I0). 

Received on February 10, 2017 
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