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This study addresses the proposition of neural network (NN) adaptive control for a 
class of nonlinear systems using fuzzy reasoning. In first step, an ideal control law is 
established based on feedback linearization technique and certainty equivalence. Then 
the NN system is introduced on line to approximate this ideal control law. The 
parameters of the NN system are on-line adapted and changed according to the gradient 
descent law, which will be approximated in part by a fuzzy inference system. In other 
words, instead of using the popular back propagation technique. we use an on-line 
simple fuzzy inference system to approximate part of the gradient descent resulting 
adaptation law.  

1. INTRODUCTION 

To model and control nonlinear systems with any desired accuracy, 
intelligent systems (IS) have been suggested as alternative approaches to 
conventional techniques in many cases. The most commonly applied methods are 
neural networks (NNs) and fuzzy logic systems (FLSs).  

For the first method, active research has been carried out on NNs control for 
nonlinear systems [1–8]. In [1] for example, the paper studies the problem of 
learning from adaptive neural network (NN) control of a class of nonaffine 
nonlinear systems in uncertain dynamic environments. In [2], the authors use a NN 
as a controller for on board tracking platform. In [3–5], the authors use a radial basis 
function (RBF) NN type to estimate the model uncertainties, compensate external 
disturbances and emulate unknown parameters. In [6], the authors use an adaptive 
RBF network control algorithm to estimate the unknown nonlinear functions to 
overcome the necessity for the mathematical model. In [7], an RBF-NN is applied 
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successively for online stable identification and control of nonlinear discrete-time 
systems. Concerning the second method, it has been shown that FLSs are a good 
tool for approximating any continuous nonlinear function to any desired accuracy 
over a compact set [8], and for a detail we can refer to a survey papers [9, 10].  

These two methods (FLSs and NNs) play a role of function approximators in 
the adaptation mechanism of adaptive control in most cases. Adaptive control of 
dynamic systems has been an active area of research since the 1960s [11]. With the 
combination of adaptive control and feedback linearization, most of control 
problems have been resolved [12–14], by transforming a nonlinear system into a 
linear one, then linear control methods can be applied. But in most cases, the 
resulting control law contains unknown nonlinear functions. FLSs in particular 
have been widely used to approximate these unknown nonlinear functions [15, 16].   

In this paper, NN adaptive control for a class of nonlinear systems is 
proposed on simulation study based on fuzzy reasoning. In first step, an ideal 
control law is established based on certainty equivalence approach and feedback 
linearization technique [17]. Then, the NN system is introduced on-line to 
approximate this ideal control law. The parameters of the NN system are on-line 
adapted and changed according to the gradient descent law. In general the NN 
parameters adaptation is based on the tracking error signal, and the back-propagation 
algorithm is used for solving this problem. In our work, instead of the tracking 
error, the control error is used, and instead of the back-propagation algorithm, we 
use a simple on-line FLS of Mamdani type [10] to approximate this control law. 
The used NN controller is of radial basis function (RBF) type with on-line adapted 
centres using the k-means algorithm [18, 19]. The advantages in using this type of 
network is to minimise the number of adapted parameters and then to avoid the 
slow convergence as in a multilayered Perceptron (MLP) mostly used in the literature, 
especially when it contains more than one hidden layer. As a consequence: 
minimising the computations time. The present work is an extended version of the 
work presented in the international symposium on robotics and intelligent sensors [20]. 

This work is organised as follows, in section 2, we describe the class of 
nonlinear systems under study and the feedback linearization control law based on 
the concept of certainty equivalence approach. In section 3, structure and properties 
of the direct adaptive neural controller DANC and the FLS approximator are 
explained. In section 4, the proposed method is used to control the nonlinear 
unstable inverted pendulum system. 

2. PROBLEM FORMULATION 

The system under study is an nth-order affine [17] nonlinear described by: 
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where  x  nR∈  is the state vector ,   u R∈ is the control input and Ry∈  is the output 
of the system, )(xf  and )(xg  are unknown but bounded nonlinear functions. We 
assume that the state vector nn

n Rxxxxxxx ∈== − T)1(T
21 ),...,(),...,,(  is available for 

measurement. In order for (1) to be controllable, it is required that the 
function 0)( ≠xg (an usual assumption [9]). Define the reference signal as )(tym , 
and we assume that its derivatives )()1( ),...,( n

mm yty , exist and are bounded. The 

tracking error e and the error vector e  will be defined as  

 1xyyye mm −=−= , (3) 

 nn Reeee ∈= − T)1( ),...,,( . (4) 

Let the vector n
n Rkkkk ∈= −

T
110 ),...,,(  be such that the polynomial 

0.......)( 0
1

1 =+++= −
− kskssh n

n
n  has all its roots strictly in the left-half complex 

plane. If the functions )(xf and )(xg  are known, then based on the certainty 
equivalence approach [17, pp. 207–275], the feedback linearization control law u  

noted •u  is derived as  )).(..(
)(

1 )( xfeKy
xg

u Tn
m −+=•  (5) 

Substituting (5) in (1), we obtain  

 ( ) ( 1)
1 0...... 0n n

ne k e k e−
−+ + + = , (6) 

where the main objective of control is  lim 0)( →te when t → ∞ . However )(xf  
and )(xg are unknown, we have to design a NN of RBF type controller with output 

( ,θ) cu u x=  to approximate the feedback linearization control law of (5), with an 
adaptation law to adjust the NN-RBF parameters vector θ . 

3. THE DIRECT ADAPTIVE NEURAL CONTROLLER (DANC) BASED 
ON FUZZY REASONING  

In this section, we develop the DANC using an RBF-NN, and the adaptation 
law is derived. At the end of this part, the fuzzy logic system FLS (fuzzy 
reasoning) is explained.  
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3.1. THE DIRECT ADAPTIVE NEURAL CONTROLLER (DANC) 

The design of an RBF-NN consists of three separate layers. The first layer is 
the input layer. The second layer is the hidden layer. The last layer gives the output 
of the network. The general RBF-NN model has a linear transformation from the 
hidden layer to the output layer. In other words, the output depends linearly on the 
weights. More explicitly, the output of an RBF-NN system can be put in the 
following form 

 )(.),( T xxuc ξθ=θ   i

nr

i
iθξ= ∑

=1

,  with )( 2ii cx −ψ=ξ , (7) 

 x  is the input vector, ψ  is a non linear function called radial basis function 
(RBF), θ  are connections weights to be adapted (parameters) between the hidden 
layer and the output layer, so the vector ]...[ TT

2
T
1

T
nrθθθ=θ  contains all adjustable 

parameters and )(xξ  is a vector of radial basis functions (RBFs). ic  are centres of 
basis functions and nr is the number of basis functions. Gaussian RBF is employed 
frequently in neural networks, since it is bounded, strictly positive and smooth.  

As cited above, the main objective of control is lim ( ) 0e t → , when t → ∞ . 
The parameters update will be designed so as to minimize the control error ue  
between the feedback linearization control law •u  (the expected ideal control law 
that ensures an ideal response) which is not available and the output 

T

( ,θ) θ .ξ( )u x xc =  of the RBF-NN controller (approximating this feedback 
linearization control law •u ), then  

 ( ,θ)u cue u x•= − . (8) 

So, one corresponding form of the cost function minimizing the control error ue  is  

 
2

min
2
ueJ = . (9) 

Based on the gradient descent law:    θ
θ
Jγ ∂= −
∂

 , (10) 

0>γ  is the learning rate, so,           
θ θ

c
u

uJ e ∂∂ = −
∂ ∂

. (11) 

In (11), the term 
θ
cu∂

∂
 can be obtained from (7). It remains just to determine ue .  

As mentioned above, in our work, instead of the tracking error, the control 
error is used, and instead of the back-propagation algorithm, we use a simple on-
line FLS of Mamdani type [10] to approximate this control law •u by 
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approximating the control error ( ,θ)u ce u u x•= − as a hall. We replace ue  in (11) 
by its estimate uê.α which is the output of a FLS of Mamdani type [10], with 0>α . 
Then (10) can be written as:  

 ˆ ˆθ γ α γ ξ( )u u
uce e z
θ

∂
′= =

∂
, (12) 

with γ α γ 0 ′ = >  being the new step size. Under the condition that this step size is 
small enough and in the worst case, the cost function will converge to a local 
minimum of (9) [21, pp. 84–104], hence ue will remain bounded throughout the 
search procedure. To ensure boundedness of the weights θ , the adaptation law (12) 
must be modified by the so-called e-modification [11, pp. 554–633]: 

 ˆ ˆθ γ .ξ( ) γ . θ
0u ue z e v′ ′= − , (13) 

00 >v  is a design constant. 
We give the overall scheme of the direct adaptive neural controller (DANC) 

with the fuzzy logic system (FLS) and the adaptation mechanism as shown in Fig. 1. 

 
Fig. 1 – Structure of the DANC-FLS. 

3.2. THE FUZZY LOGIC SYSTEM (FLS)  

In this section, we explain the basic idea used to construct the FLS for 
obtaining an estimation uê  of the control error ue . We have the following situations: 

Situation 1: The control signal is “correct" in the sense that it is driving the 
output towards the reference: this occurs when the tracking error is maintained at 
zero or when it is decreasing.  

Situation 2: The control signal is not “correct” when the output is drifting 
away from the reference. In this case, two cases may arise: 
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I – The output may be drifting away from the reference from above, in which 
case the magnitude of the applied control signal ( ,θ)u xc  is larger than u• , 

( ,θ)u z uc
•>  and thus ( ,θ) 0u u xc

• − < . 
II – The output may be drifting away from below, and the magnitude of the 

applied control signal is less than •u , ( ,θ)cu z u•<  and thus  0( ,θ)cu u z• − > . 
Using this reasoning, we are ready to create a rule base (RB) to estimate the 

control error ue , where the output of the FIS is the crisp value of the estimated 
control error. The crisp input variables are the current tracking error e(t) and the 
change of the tracking error )1()()( −−= tetetde . Introducing the fuzzy variables: 

ERROR(e), VARIATION  OF ERROR( de ) and CONTROL ERROR ( uê ) each 
taking three fuzzy values: ZERO(Z), NEGATIVE(N) and POSITIVE( P). We obtain 
the rule base (RB): 

Case 1 – the control signal is correct when the tracking error is zero or 
decreasing; this implies the following rules:   

If   ERROR  is  ZERO  AND  VARIATION OF ERROR   is  ZERO   
If   ERROR   is  POSITIVE  AND  VARIATION OF ERROR   is  NEGATIVE  
If   ERROR   is  NEGATIVE  AND  VARIATION OF ERROR   is  POSITIVE 
then   CONTROL ERROR  is ZERO 

Case 2 – the output is drifting away from above; this induces the following rules: 
If   ERROR   is   ZERO  AND  VARIATION OF ERROR   is  NEGATIVE  
If   ERROR   is  NEGATIVE   AND  VARIATION OF ERROR  is  
(NEGATIVE   OR   ZERO)   
then  CONTROL ERROR is NEGATIVE 

Case 3 – the output is drifting away from below; this induces the following rules: 
If   ERROR   is   ZERO  AND  VARIATION OF ERROR   is POSITIVE 
If   ERROR   is   POSITIVE   AND   VARIATION OF ERROR   is  ( ZERO   
OR   POSITIVE ) 
then   CONTROL ERROR   is   POSITIVE. 

For the detail, we can refer to [20]. We have also to chose the shape of all the 
membership functions and their distribution on the universe of discourse as shown 
in Fig. 2, where PZN ccc ,, , are the points where the membership functions reach 
their maximum. After fuzzification and (prod, max) inference strategy, the crisp 
estimated control error uê  is computed through center of gravity defuzzification formula. 
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4. SIMULATION RESULTS 

In this section, we test the performance of the proposed DANC-RBF with 
fuzzy reasoning on the inverted pendulum system [22] depicted in Fig. 3 and 
described by the following dynamical equations:  
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1x = θ  is the angular position of the pendulum (see Fig. 3), 2x = θ  is the angular 
velocity of the pendulum. We use 29.8 m/sg = , g1 kM =  is the mass of the cart, 

0.1 kgm =  is the mass of the pole and 0.5 ml =  is the half length of the pole. 
The control objective is to make the pole of the pendulum track a sine wave 
trajectory θ sin( )m my AM t= =  with different amplitudes AM , and we terminate 
by balancing the pole to the vertical position )0,0(),( 21 =xx , i.e., AM = 0. Clearly, 
the derivatives of the reference my  exist and are bounded. The parameters are 

chosen as 9γ = , v0 = 0.005, step size d 0.01t = , and T T
0[ ] [5 5]1k k k= =  in 

order to have all roots of  0. 01
2 =++ ksks  in the open left-half plane.  

The RBF controller has five radial basis functions. The parameters θ  are 
initialised to 0. The centres of the basis functions in the RBF network are uniformly 
distributed in the interval [–1; 2] and are adjusted using the k-means algorithm [18, 19]. 
The RBF network has two inputs )]([][ )2(T

21 meKzzzx θ+θ===  with 

][ θ−θθ−θ= mme . The used basis functions are Gaussian functions under the 
form  

 
2

( ) exp( ),
2

rr
2

−
ψ =

σ
  (15)  
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with 
2icxr −=  and a width 5.0=σ . The following initial conditions for the 

inverted pendulum T
1 2( (0), (0)) ( 0.2 rad, 0 rad/s)x x = −  are used in the 

simulation. The fuzzy estimator of the control error has rule base (RB) as described 
in section 3.2. The membership functions of the fuzzy sets are shown in Fig. 2. The 
corresponding parameters defining these membership functions are set to: 

5.0−=Nc , 0=Zc , 5.0=Pc  for the tracking error, 5.3−=Nc , 0=Zc , 
3.5cP =  for the variation of error and 5.3−=Nc , 0=Zc , 5.3=Pc  for the estimated 

control error. The simulation results for different amplitudes of the reference signal 
are shown in Figs. 4 to 7. The system output )(ty  (pole angle) is in dotted while the 
reference signal )(tym  is in continuous. Figure 4 shows the response curve of the 
pole angle from the initial position (– 0.2, 0) and the corresponding desired values 
with amplitudes 30/π=AM  during the time interval [0, 12.5] st∈ , and 

π /15AM =  during the time interval [12.5, 25] st∈ , and finally with amplitude 
0=AM  which represents a regulation case during the remaining time interval 

[25, 30] st ∈ . Figure 5 shows the tracking error converging rapidly to a value 
close to zero. Figure 6 represents the corresponding control input which peaks at 

12.5 st = (the first amplitude variation from / 30AM π=  to 15/π=AM ), and at 
25 st =  (the second amplitude variation from 15/π=AM  to 0=AM ). Figure 7 

shows that the crisp estimated error provided by the fuzzy estimator is smooth, 
confirming the smoothing property of DANC-RBF-FLS system. It also remains 
bounded and converges quite rapidly to a value close to zero. 

             
Fig. 2 – Distribution of membership functions.                      Fig. 3 – The inverted pendulum system.  
              on the universe of discourse.  
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Fig. 4 – The pole angle θ=   y  (---)and the 

desired reference trajectory my  ( ____).. 

 

Fig. 5 – The corresponding tracking error e . 

  
Fig. 6 – The control signal u .                  Fig. 7 – The corresponding estimated control 

error uê using the RBF-Mamdani controller. 

From these figures, we can see that the controlled system behaves well in all 
situations (tracking and regulation cases). 

5. CONCLUSION 

This paper introduces a direct adaptive neural controller (DANC) for an 
affine unknown nonlinear systems using fuzzy reasoning. An RBF-NN system is 
used on-line to approximate a feedback linearization control law based on the 
certainty equivalence approach. The parameters of the RBF-NN controller are on-
line adjusted based on the gradient descent law minimizing the control error cost. 
Instead of using the back propagation technique, an FLS is used to estimate the 
control error appearing in the adaptation law. The algorithm was successfully 
tested with better performances to on-line control the inverted pendulum system.  

Received on September 9, 2013 
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