
 Rev. Roum. Sci. Techn.– Électrotechn. et Énerg.
 Vol. 65, 1-2, pp. 117–121, Bucarest, 2020

1 Université des Sciences et de la Technologie d’Oran, El Mnaouar, BP 1505, Bir El Djirs 31000 (Oran) Algérie
2 Université d’ Evry-Val-d’Essonne, IBISC, Paris, France
3 Université de Bechar, Faculté de Technologie, Département de génie électrique, Bechar 08000 Algérie

EFFICIENT TRAJECTORY RECONSTRUCTION FOR ROBOT
PROGRAMMING BY DEMONSTRATION

REDA HANIFI ELHACHEMI AMAR1, LAREDJ BENCHIKH2, HAKIMA DERMECHE1, OUAMRI BACHIR 3,
ZOUBIR AHMED-FOITIH1

Key words: Programming by demonstration, Interpolation, Motion capture, Trajectory reconstruction.

The reproduction of hand movements by a robot remains difficult and conventional learning methods do not allow us to
faithfully recreate these movements because it is very difficult when the number of crossing points is very large. Programming
by demonstration gives a better opportunity for solving this problem by tracking the user’s movements with a motion capture
system and creating a robotic program to reproduce the performed tasks. This paper presents a programming by demonstration
system in a trajectory level for the reproduction of hand/tool movement by a manipulator robot; this was realized by tracking
the user’s movement with the ArToolkit using a normal camera (low cost) and reconstruct the trajectories by using the
constrained cubic spline, which gives better results comparing the conventional cubic spline interpolation. And finally the
obtained trajectories will be simulated in a virtual environment on a robot (Puma 600) based on a computed torque controller.

1. INTRODUCTION
Since the invention of the first robots, the reproduction of

human movement is still a challenging subject in robotics.
This reproduction can be divided into two categories: the
first one is imitation of the human movement as it is by the
robot to realize the task. References [1, 2] they imitate the
human movement to realize different tasks like writing and
opening doors, their approach was derived from the human
functioning based on the body schema and the percept. The
second reproduces the human movement by taking as
reference only the hand (the end-effector) and neglecting
how and where the other joints are positioned (shoulder,
elbow, and wrist). In Benchikh’s work, in which he realized
a system of a synchronous reproduction of the human
movement, following the movement of a single point of
interest [3].

Fig. 1 – Robot programming methods.

One can notice two categories of robot programming
methods, the first one is manual like the text based systems,
graphical systems and the teach-pendant programming; the
second one is the automatic programming such as the
instruction and the observation based programming. The Fig. 1
represents the categorization of these methods made by [4].

For applications such as imitation and reproduction of
human movement; conventional learning methods as text
programming, graphical systems or the teach-pendant
programming are not suitable. Especially when the

trajectories to reproduce are complex and the number of
crossing points are high. Most of the recent works for
human movement reproduction use the robot observation
based programming. In this category, we find what is called
programming by demonstration or learning by watching in
other readings [1–3, 5, 6].

Programming by demonstration (PbD) is a robot
programming method based on the extraction of data
directly from the visualization of the user’s performance. It
is a promising automatic method, which can permit to a
user with little or no expertise to program robot tasks [7].

In PbD systems, the teacher performs the task while a
learning interface records the movement and actions carried
out during the performance. Different interfaces can be
used kinesthetic guidance teacher moves the robot links
manually and the trajectories are recorded [6]. The direct
control and teleoperation interfaces are also used in PbD
systems [8]. Interfaces based on sensors (vision, magnetic
and inertia) are widely used in PbD systems. There is a
variety of tracking techniques in vision systems [9, 10] and
it has an advantage over the other sensor-based methods,
because no sensors need to be attached to the teacher.
Vision systems allow the teacher to have more natural
performance without being disturbed by the material.

In this paper, we propose a PbD system in trajectory
level based on visual tracking system (ARToolKit) to track
the hand / tool movement and reproduce these movements
by a robot manipulator in a simulated environment. In the
next section, we present our visual system.

2. THE TRACKING SYSTEM
For the hand/tool tracking, we propose to use a vision-

based tracking system. These systems use image-processing
methods to calculate the camera pose relative to real world
objects and give the position and orientation of these objects.
In our work, we use the ARToolKit for tracking the user’s
hand/tool.

We fixed the markers on the faces of a cube (the same
marker for all faces). This will allow the camera to see at least
one marker and permit us to avoid occlusions. Based on the
work [11], we have used simple markers with a 30 % border

118 Efficient trajectory reconstruction for robot programming 2

width to have a better detection of the marker and avoid at the
maximum the false identifications. In Fig. 2 we can see an
example of the markers that are using.

The operator will perform the movements and the system
will track the position of the marker for the hand / tool and
gives the position (x,y,z) every sampling time (the position is
calculated from the centre of the cube).

The acquisition camera was set at 20 frames/s to limit
marker miss identifications. The slow frame rate and some
miss identifications creates gapes and amplitudes peaks. An
interpolation of acquired tracking data is mandatory. In
literature, different interpolation have been used, non-uniform
rational B-splines (NURBS) in [12] for the trajectory
approximation, [13] used the L1 splines for the interpolation
and preservation of the trajectory. In Section 5, cubic and
constrained interpolations are both used and compared.

3. THE CONSTRAINED CUBIC SPLINE
The principle behind constrained cubic spline is to

prevent overshooting and eliminating oscillation by
sacrificing smoothness. In this interpolation, we replace the
equality of the second order derivatives at every point by a
specified first order derivative [14]. The construction of the
constrained cubic spline function Fi is based on the
following criteria:

• Curves are third order polynomials

 () 3 2
i i i i i

F x a x b x c x d= + + + ; (1)

• Curves pass through all the known points;
• First order derivative, is the same for both

functions on each side of a point

 () ()1i iF x F x+′ ′= ; (2)

• Boundary conditions are the same as for the
natural cubic spline

 () ()1 0 0n nF x F x′′ ′′= = ; (3)

• The second order derivative is replaced by a
specified first order derivative at every point.

 () () ()1i iF x F x F x+′ ′ ′= = . (4)

The main step becomes the calculation of the slope for
each point. Naturally, we know the slope will be between
the slopes of the adjacent straight lines, and it should
approach zero if the slope of either line approaches zero.

Fig. 2 – Example of the ArToolKit markers

 () 1 1

1 1

2 / i i i i

i i i i

x x x x
F x

y y y y
+ −

+ −

− −
′ = +

− −

 (5)

() 0F x′ = , if the slope changes sign at this point.
The equation (5) is used only for the intermediate points;

in the end points, we use equations (6) and (7):

 () ()
()

()1 0 1
1 0

1 0

3

2 2

y y F x
F x

x x

′−
′ = −

−
, (6)

 () ()
()

()1 1

1

3

2 2
n n n

n n
n n

y y F x
F x

x x
− −

−

′−
′ = −

−
. (7)

In this interpolation, there is no necessity to solve a
system of equation because the slope at each point is
known. Based on the two adjacent points on each side, we
can calculate every spline function; as given by equation (1)
by using the equations (8) to (13).

 () () ()()
()

()
()

1 1
1 1 2

1 1 1 1

2 2 6i i i i i i
i

i i

F x F x y y
F x

x x x x

− −
−

− −

′ ′+ −
′′ = +

− −
, (8)

 ()
() ()()
()

()
()

1 1
1 2

1 1 1 1

2 2 6i i i i i
i

i i

F x F x y yi
F x

x x x x

− −

− −

′
′′

′+ −
= +

− −
. (9)

Finally, every polynomial is calculated from the
following parameters

() ()
()
1 1

16
i i i

i
i i

F x F x
a

x x
−

−

′′ ′′−
=

−
, (10)

 () ()
()

1 1

12
i i i i i i

i
i i

x F x x F x
b

x x
− −

−

′′ ′′−
=

−
, (11)

() () ()

()

2 2 3 3
1 1 1

12
n n i i i i i

i
n n

y y b x x a x xi
x x

c − − −

−

− − − − −
=

−
, (12)

 3 2
1 1 1 1i i i i i i i id y a x b x c x− − − −= − − − . (13)

4. THE ROBOT’S MODEL OF MOTION
In our work, we use a manipulator robot model, the

Puma 600. Parameters of this robot are shown in table I [15,
16]. Motion model of such a mechanism is usually
described by the following matrix equation:

 () () () (),M q q C q q q G q F qΓ = + + + , (14)

where:

Γ – vector of actuator joint torque;
()M q – inertia matrix;

(),C q q – vector of centrifugal and Coriolis torque;

()G q – vector of gravitational torques;

()F q – vector of actuator joint friction forces;
, ,q q q – are respectively, the joint angle,

velocity, and acceleration vectors.
To ensure the linearization of the nonlinear system

described by the equation (14) in closed loop, we introduce
a linearization control system based on exacting knowledge
of the robot model and its implementation. In this control
system, the loop of the linearization is achieved by
choosing a torque Γ applied to the robot, as follow

3 Reda Hanifi Elhachemi Amar et al. 119

 () () () ()0 ,M q C q q q G q F qΓ = Γ + + + , (15)

where Γ0 is an auxiliary input of the selected controller. A
proportional derivative (PD) controller is a typical choice
and it is given by the equation

 () ()0 d v d p dq K q q K q qΓ = + − + − . (16)

By replacing 0q = Γ in the equation (16), we get:

 0 v pe K e K eΓ = + + , (17)
where:

de q q= − – vector of the position error;

de q q= − – vector of the velocity error;

de q q= − – vector of the acceleration error;

, ,d d dq q q – are vectors of desired position, respectively
velocity and acceleration.

,p vK K – gain matrices of the PD controller.
The error eq. (17) is a linear differential equation of

second order where Kp and Kv are defined positive diagonal
matrices, so the closed-loop system becomes linear
decoupled

350 0 0

0 350 0
0 0 350

pK =

,
35 0 0
0 35 0
0 0 35

vK =

. (15)

In Fig. 3 we can see the implementation of the computed
torque controller on the Puma robot.

Fig. 3. – Implementation of the computed torque controller.

Table 1
Parameters of the Puma 600 manipulator robot

Parameters Values
Mass of the first body 10,521 kg
Mass of the second body 10,236 kg
Mass of the third body 8,767 kg
Coefficient of viscous friction 2,52 N.m.s/rad
Coefficient of viscous friction 7 N.m.s/rad
Coefficient of viscous friction 1,75 N.m.s/rad
Coefficient of dry friction 3,6 N.m.s/rad
Coefficient of dry friction 10 N.m.s/rad
Coefficient of dry friction 2,5 N.m.s/rad
Length of the first body 0,149 m
Length of the second body 0,432 m
Length of the third body 0,431 m
Mass of the first body 10,521 kg
Mass of the second body 10,236 kg
Mass of the third body 8,767 kg
Coefficient of viscous friction 2,52 N.m.s/rad

5. SIMULATION AND RESULTS
Since the trajectories obtained from the tracking system

should be interpolated, we started by testing the constrained
cubic spline interpolation on different data sets. The Figs. 4 and
5 show a comparison between the constrained cubic in blue line
and spline and the conventional cubic spline interpolation in red
line, red circles are the interpolated data points.

Fig. 4. – Trajectory reconstruction using cubic spline and constrained

cubic spline interpolations.

In the first tests, we used both of the interpolation
methods to reconstruct handwriting trajectory made at
almost the same speed. We have chosen to reconstruct the
letter M using both of the cubic spine interpolation and the
constrained cubic spline because this letter contains sudden
directional changes, which will help us to see the behavior
of the used interpolation method.

120 Efficient trajectory reconstruction for robot programming 4

Fig. 5. – Interpolation of different data sets.

For the results in the Fig. 4 b we see that both of the
methods gave the same results this due to the fact that there
was no large data variation but in the Fig. 4 a we can see an
oscillation and an overshooting of the reconstructed data.
Figure 4 c shows the result of the reconstructed trajectory
where we can clearly see that constrained cubic spline gave
the better results and the oscillation of the cubic spine
interpolation affected the obtained trajectory. For Fig. 5 we
have used the following data:

(a): x = [0,1,2,3,4,5,6,7,8,9,10] ; y = [0,0,0,0,0,1,1,1,1,1,1];

(b): x = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14];
 y = [0,0,0,0,0,1,1,0,0,0,–1,0,0,0,0].

In Fig. 5 it is noted that the constrained cubic spline does
not oscillate after large amplitude variation and reduces the
overshooting comparing to the cubic spline. This fact
makes the constrained cubic spline more stable and has less
oscillation, which makes it better for the reconstruction of
the trajectories.

In Fig. 6 one can see a handwriting trajectory
reconstructed with the constrained cubic spline
interpolation.

The interpolation programs were made with Matlab on a
computer with the following configuration: I7 3770 3.4
GHz and 8 Gb RAM. Table 2 shows interpolation
execution time according to interpolated point number.

Table 2
Parameters of the Puma 600 manipulator robot

One can notice two behaviours. The first is for number of

points below 200: the constrained cubic spline is faster than
the cubic spline since it does not solve a system of
equations. The second case is when the number of
interpolated points exceeds 200 the cubic spline overcomes
the constrained cubic spline.

Fig. 6 – 3D Trajectory reconstructed by the constrained cubic spline.

Figure 7 shows a simulation of Puma 600 robot
executing the same trajectory. The advantage of the
simulation process is reconstructed path visualization. The
proposed system depends on the teacher, and do not
generate collision-free trajectories.

6. CONCLUSIONS
In this article, we presented a robot programming by

demonstration system in a trajectory level. The system is
based on human movement reproduction by following a
single point of interest (the hand/tool). We used ARToolKit
as a visual tracking system. The slow frame rate and the
miss identifications of the markers was creating gapes in
the trajectories. The natural cubic spline and constrained
cubic spline interpolations were used to correct these
weaknesses and to reconstruct the trajectory. A comparison

Fig. 7. – Simulation of robot trajectory reproduction.

Number of points Constrained spline (ms) Cubic spline (ms)
25 1.383 2.332
50 1.900 2.481
100 2.502 3.121
200 4.084 3.390

5 Reda Hanifi Elhachemi Amar et al. 121

was made between those both interpolation methods for 3D
trajectories reconstruction, 1D data sets and as per
execution time. Tests show that constrained cubic spline
interpolation overcomes the cubic spline interpolation. The
constrained cubic spline interpolation shows good results
and the fact that it generates less oscillation and prevents
overshooting makes it suitable for the trajectory
reconstruction. In the future works this it will be used in a
real time trajectory reconstruction.

Received on July 2, 2018

REFERENCES
1. C. A. Acosta-Calderon, H. Hu, Robot imitation: Body schema and body

percept, Applied Bionics and Biomechanics, 2, pp. 131–148
(2005).

2. C. A. Acosta-Calderon, H. Hu, Robot imitation from human body
movements, The 3rd International Symposium on Imitation in
Animals and Artifacts, UK, 2005, pp. 1–9.

3. L. Benchikh, Method for training a robot or the like, and device for
implementing said method, U.S. Patent Application No 12/812 792
(2011).

4. G. Biggs, B. MacDonald, A survey of robot programming systems.
Proceedings of Australasian Conference on Robotics and
Automation, Brisbane, Australia, 2003, pp. 1–10.

5. Y. Kuniyoshi, M. Inaba, H. Inoue, Learning by watching: Extracting
reusable task knowledge from visual observation of human
performance, IEEE Transactions on Robotics and Automation, 10,
pp. 799-822 (1994).

6. S. Calinon, A. Billard, A probabilistic programming by demonstration
framework handling constraints in joint space and task space,
International Conference on Intelligent Robots and Systems IROS,
Nice, France, 2008, pp. 367–372.

7. J. Aleotti, S. Caselli, M. Reggiani, Leveraging on a virtual environment
for robot programming by demonstration, Robotics and
Autonomous Systems, 47, pp. 153–161 (2004).

8. M. Shimizu, W. Yoon, K. Kitagaki, Experimental validation of task skill
transfer approach using a humanoid robot, International
Symposium on Assembly and Manufacturing ISAM’07, 2007, pp
141–146.

9. A. Tomescu, F. M. G. Tomescu, Existence and uniqueness of weak
solutions of the induced current reaction problem (Part I: Electric
field problem), Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg.,
39, 1, pp. 25–44 (1993).

10. M. Kurien, M. K. Kim, M. Kopsida, I. Brilakis, Real-time simulation
of construction workers using combined human body and hand
tracking for robotic construction worker system. Automation in
Construction, 86, pp. 125–137 (2018).

11. P. P. Valentini, , Natural interface for interactive virtual assembly in
augmented reality using Leap Motion Controller, International
Journal on Interactive Design and Manufacturing (IJIDeM), pp. 1–
9 (2018).

12. D. Khan, S. Ullah, I. Rabbi, Factors affecting the design and tracking
of ARToolKit markers, Computer Standards & Interfaces, 41, pp.
56–66 (2015).

13. J. Aleotti, S. Caselli, Robust trajectory learning and approximation for
robot programming by demonstration, Robotics and Autonomous
Systems, 54, pp. 409–413 (2006).

14. F. Hernoux et al. , Leap Motion pour la capture de mouvement 3D par
spline L1, Journées du Groupe de Travail en Modélisation
Géométrique, Marseille, 2013, France.

15. C.J. Kruger, Constrained cubic spline interpolation, Chemical
Engineering Applications, 2003.

16. B. Ouamri, Z. Ahmed-Foitih, Adaptive neuro-fuzzy inference system
based control of Puma 600 robot manipulator, International Journal
of Electrical and Computer Engineering, 2, pp. 90–97 (2012).

16. B. Ouamri, Z.Ahmed-Foitih, Computed Torque Control of a Puma 600
Robot by using Fuzzy Logic, International Review of Automatic
Control, 4, pp. 248–252 (2011).

