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The reproduction of hand movements by a robot remains difficult and conventional learning methods do not allow us to 
faithfully recreate these movements because it is very difficult when the number of crossing points is very large. Programming 
by demonstration gives a better opportunity for solving this problem by tracking the user’s movements with a motion capture 
system and creating a robotic program to reproduce the performed tasks. This paper presents a programming by demonstration 
system in a trajectory level for the reproduction of hand/tool movement by a manipulator robot; this was realized by tracking 
the user’s movement with the ArToolkit using a normal camera (low cost) and reconstruct the trajectories by using the 
constrained cubic spline, which gives better results comparing the conventional cubic spline interpolation. And finally the 
obtained trajectories will be simulated in a virtual environment on a robot (Puma 600) based on a computed torque controller. 

1. INTRODUCTION 
Since the invention of the first robots, the reproduction of 

human movement is still a challenging subject in robotics. 
This reproduction can be divided into two categories: the 
first one is imitation of the human movement as it is by the 
robot to realize the task. References [1, 2] they imitate the 
human movement to realize different tasks like writing and 
opening doors, their approach was derived from the human 
functioning based on the body schema and the percept. The 
second reproduces the human movement by taking as 
reference only the hand (the end-effector) and neglecting 
how and where the other joints are positioned (shoulder, 
elbow, and wrist). In Benchikh’s work, in which he realized 
a system of a synchronous reproduction of the human 
movement, following the movement of a single point of 
interest [3]. 

 
Fig. 1 – Robot programming methods. 

One can notice two categories of robot programming 
methods, the first one is manual like the text based systems, 
graphical systems and the teach-pendant programming; the 
second one is the automatic programming such as the 
instruction and the observation based programming. The Fig. 1 
represents the categorization of these methods made by [4]. 

For applications such as imitation and reproduction of 
human movement; conventional learning methods as text 
programming, graphical systems or the teach-pendant 
programming are not suitable. Especially when the 

trajectories to reproduce are complex and the number of 
crossing points are high. Most of the recent works for 
human movement reproduction use the robot observation 
based programming. In this category, we find what is called 
programming by demonstration or learning by watching in 
other readings [1–3, 5, 6]. 

Programming by demonstration (PbD) is a robot 
programming method based on the extraction of data 
directly from the visualization of the user’s performance. It 
is a promising automatic method, which can permit to a 
user with little or no expertise to program robot tasks [7]. 

In PbD systems, the teacher performs the task while a 
learning interface records the movement and actions carried 
out during the performance. Different interfaces can be 
used kinesthetic guidance teacher moves the robot links 
manually and the trajectories are recorded [6]. The direct 
control and teleoperation interfaces are also used in PbD 
systems [8]. Interfaces based on sensors (vision, magnetic 
and inertia) are widely used in PbD systems. There is a 
variety of tracking techniques in vision systems [9, 10] and 
it has an advantage over the other sensor-based methods, 
because no sensors need to be attached to the teacher. 
Vision systems allow the teacher to have more natural 
performance without being disturbed by the material. 

In this paper, we propose a PbD system in trajectory 
level based on visual tracking system (ARToolKit) to track 
the hand / tool movement and reproduce these movements 
by a robot manipulator in a simulated environment. In the 
next section, we present our visual system. 

2. THE TRACKING SYSTEM 
For the hand/tool tracking, we propose to use a vision-

based tracking system. These systems use image-processing 
methods to calculate the camera pose relative to real world 
objects and give the position and orientation of these objects. 
In our work, we use the ARToolKit for tracking the user’s 
hand/tool. 

We fixed the markers on the faces of a cube (the same 
marker for all faces). This will allow the camera to see at least 
one marker and permit us to avoid occlusions. Based on the 
work [11], we have used simple markers with a 30 % border 
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width to have a better detection of the marker and avoid at the 
maximum the false identifications. In Fig. 2 we can see an 
example of the markers that are using.  

The operator will perform the movements and the system 
will track the position of the marker for the hand / tool and 
gives the position (x,y,z) every sampling time (the position is 
calculated from the centre of the cube). 

The acquisition camera was set at 20 frames/s to limit 
marker miss identifications. The slow frame rate and some 
miss identifications creates gapes and amplitudes peaks. An 
interpolation of acquired tracking data is mandatory. In 
literature, different interpolation have been used, non-uniform 
rational B-splines (NURBS) in [12] for the trajectory 
approximation, [13] used the L1 splines for the interpolation 
and preservation of the trajectory. In Section 5, cubic and 
constrained interpolations are both used and compared. 

3. THE CONSTRAINED CUBIC SPLINE 
The principle behind constrained cubic spline is to 

prevent overshooting and eliminating oscillation by 
sacrificing smoothness. In this interpolation, we replace the 
equality of the second order derivatives at every point by a 
specified first order derivative [14]. The construction of the 
constrained cubic spline function Fi is based on the 
following criteria: 

• Curves are third order polynomials 

 ( ) 3 2
i i i i i

F x a x b x c x d= + + + ; (1) 

• Curves pass through all the known points; 
• First order derivative, is the same for both 

functions on each side of a point 

 ( ) ( )1i iF x F x+′ ′= ; (2) 

• Boundary conditions are the same as for the 
natural cubic spline 

 ( ) ( )1 0 0n nF x F x′′ ′′= = ; (3) 

• The second order derivative is replaced by a 
specified first order derivative at every point. 

 ( ) ( ) ( )1i iF x F x F x+′ ′ ′= = . (4) 

The main step becomes the calculation of the slope for 
each point. Naturally, we know the slope will be between 
the slopes of the adjacent straight lines, and it should 
approach zero if the slope of either line approaches zero. 

   
Fig. 2 – Example of the ArToolKit markers 

 ( ) 1 1

1 1

2 / i i i i

i i i i

x x x x
F x

y y y y
+ −

+ −

− −
′ = +

− −

 
 
 

 (5) 

( ) 0F x′ = , if the slope changes sign at this point. 
The equation (5) is used only for the intermediate points; 

in the end points, we use equations (6) and (7): 
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In this interpolation, there is no necessity to solve a 
system of equation because the slope at each point is 
known. Based on the two adjacent points on each side, we 
can calculate every spline function; as given by equation (1) 
by using the equations (8) to (13). 
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Finally, every polynomial is calculated from the 
following parameters 
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4. THE ROBOT’S MODEL OF MOTION 
In our work, we use a manipulator robot model, the 

Puma 600. Parameters of this robot are shown in table I [15, 
16]. Motion model of such a mechanism is usually 
described by the following matrix equation: 

 ( ) ( ) ( ) ( ),M q q C q q q G q F qΓ = + + + , (14) 

where: 

Γ  – vector of actuator joint torque; 
( )M q  – inertia matrix; 

( ),C q q – vector of centrifugal and Coriolis torque; 

( )G q  – vector of gravitational torques; 

( )F q   – vector of actuator joint friction forces; 
, ,q q q  – are respectively, the joint angle, 

velocity, and acceleration vectors. 
To ensure the linearization of the nonlinear system 

described by the equation (14) in closed loop, we introduce 
a linearization control system based on exacting knowledge 
of the robot model and its implementation. In this control 
system, the loop of the linearization is achieved by 
choosing a torque Γ applied to the robot, as follow 
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 ( ) ( ) ( ) ( )0 ,M q C q q q G q F qΓ = Γ + + + , (15) 

where Γ0 is an auxiliary input of the selected controller. A 
proportional derivative (PD) controller is a typical choice 
and it is given by the equation 

 ( ) ( )0 d v d p dq K q q K q qΓ = + − + − .  (16) 

By replacing 0q = Γ  in the equation (16), we get: 

 0 v pe K e K eΓ = + + , (17) 
where: 

de q q= −  – vector of the position error; 

de q q= −  – vector of the velocity error; 

de q q= − – vector of the acceleration error; 

, ,d d dq q q  – are vectors of desired position, respectively 
velocity and acceleration. 

,p vK K     – gain matrices of the PD controller. 
The error eq. (17) is a linear differential equation of 

second order where Kp and Kv are defined positive diagonal 
matrices, so the closed-loop system becomes linear 
decoupled 
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. (15) 

In Fig. 3 we can see the implementation of the computed 
torque controller on the Puma robot. 

 
Fig. 3. – Implementation of the computed torque controller. 

Table 1 
Parameters of the Puma 600 manipulator robot  

Parameters Values 
Mass of the first body 10,521 kg 
Mass of the second body 10,236 kg 
Mass of the third body 8,767 kg 
Coefficient of viscous friction 2,52 N.m.s/rad 
Coefficient of viscous friction 7  N.m.s/rad 
Coefficient of viscous friction 1,75 N.m.s/rad 
Coefficient of dry friction 3,6 N.m.s/rad 
Coefficient of dry friction 10  N.m.s/rad 
Coefficient of dry friction 2,5 N.m.s/rad 
Length of the first body 0,149 m 
Length of the second body 0,432 m 
Length of the third body 0,431 m 
Mass of the first body 10,521 kg 
Mass of the second body 10,236 kg 
Mass of the third body 8,767 kg 
Coefficient of viscous friction 2,52 N.m.s/rad 

5. SIMULATION AND RESULTS 
Since the trajectories obtained from the tracking system 

should be interpolated, we started by testing the constrained 
cubic spline interpolation on different data sets. The Figs. 4 and 
5 show a comparison between the constrained cubic in blue line 
and spline and the conventional cubic spline interpolation in red 
line, red circles are the interpolated data points. 

 

 

 
Fig. 4. – Trajectory reconstruction using cubic spline and constrained 

cubic spline interpolations. 

In the first tests, we used both of the interpolation 
methods to reconstruct handwriting trajectory made at 
almost the same speed. We have chosen to reconstruct the 
letter M using both of the cubic spine interpolation and the 
constrained cubic spline because this letter contains sudden 
directional changes, which will help us to see the behavior 
of the used interpolation method. 
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Fig. 5. – Interpolation of different data sets. 

For the results in the Fig. 4 b we see that both of the 
methods gave the same results this due to the fact that there 
was no large data variation but in the Fig. 4 a we can see an 
oscillation and an overshooting of the reconstructed data. 
Figure 4 c shows the result of the reconstructed trajectory 
where we can clearly see that constrained cubic spline gave 
the better results and the oscillation of the cubic spine 
interpolation affected the obtained trajectory. For Fig. 5 we 
have used the following data: 

(a):  x = [0,1,2,3,4,5,6,7,8,9,10] ; y = [0,0,0,0,0,1,1,1,1,1,1];  

(b):  x = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14]; 
        y = [0,0,0,0,0,1,1,0,0,0,–1,0,0,0,0]. 

In Fig. 5 it is noted that the constrained cubic spline does 
not oscillate after large amplitude variation and reduces the 
overshooting comparing to the cubic spline. This fact 
makes the constrained cubic spline more stable and has less 
oscillation, which makes it better for the reconstruction of 
the trajectories. 

In Fig. 6 one can see a handwriting trajectory 
reconstructed with the constrained cubic spline 
interpolation. 

The interpolation programs were made with Matlab on a 
computer with the following configuration: I7 3770 3.4 
GHz and 8 Gb RAM. Table 2 shows interpolation 
execution time according to interpolated point number. 

Table 2 
Parameters of the Puma 600 manipulator robot  

 
One can notice two behaviours. The first is for number of 

points below 200: the constrained cubic spline is faster than 
the cubic spline since it does not solve a system of 
equations. The second case is when the number of 
interpolated points exceeds 200 the cubic spline overcomes 
the constrained cubic spline. 

 
Fig. 6 – 3D Trajectory reconstructed by the constrained cubic spline. 

Figure 7 shows a simulation of Puma 600 robot 
executing the same trajectory. The advantage of the 
simulation process is reconstructed path visualization. The 
proposed system depends on the teacher, and do not 
generate collision-free trajectories. 

6. CONCLUSIONS 
In this article, we presented a robot programming by 

demonstration system in a trajectory level. The system is 
based on human movement reproduction by following a 
single point of interest (the hand/tool). We used ARToolKit 
as a visual tracking system. The slow frame rate and the 
miss identifications of the markers was creating gapes in 
the trajectories. The natural cubic spline and constrained 
cubic spline interpolations were used to correct these 
weaknesses and to reconstruct the trajectory. A comparison 

 
Fig. 7. – Simulation of robot trajectory reproduction. 

Number of points Constrained spline (ms) Cubic spline (ms) 
25 1.383 2.332 
50 1.900 2.481 
100 2.502 3.121 
200 4.084 3.390 
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was made between those both interpolation methods for 3D 
trajectories reconstruction, 1D data sets and as per 
execution time. Tests show that constrained cubic spline 
interpolation overcomes the cubic spline interpolation. The 
constrained cubic spline interpolation shows good results 
and the fact that it generates less oscillation and prevents 
overshooting makes it suitable for the trajectory 
reconstruction. In the future works this it will be used in a 
real time trajectory reconstruction. 

Received on July 2, 2018 
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