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Constructing a general and a daily used controller remains the main concern for brain-computer interfaces (BCIs) systems. The 
most characterized problems in synchronous based BCI systems are the dependence on the stimulation and the number of 
stimulation sequences set in advance, the ignorance of the current user’s state, and the requirement of operator intervention 
since the user can neither start nor stop the BCI system. Thus, to solve these issues, it is important to know at any given time if 
the user is paying attention to the system. To this end, an asynchronous P300 based BCI approach is introduced in this paper, 
where a subject can control home appliances by switching ON or OFF a device to attain a self-paced control. We introduce a 
new classification approach which uses separate rows and columns classifiers in BCI2000 framework. Each dataset is analyzed 
separately in order to find differences in their characteristics and utilize these differences in improving the performance of the 
P300Speller paradigm. Then we combined the output of each classifier to recognize the desired action. A threshold-based 
approach was applied to help our system to take a decision or to abstain from doing so. The asynchronous classifier reached 
promising results. This approach would enhance the system performance by increasing the selection speed and the number of 
sequences needed to take a decision. It produced remarkably better results than classifying row and column together. 

1. INTRODUCTION 
The assistive technology is one of the most important 

areas on which brain computer interface researcher groups 
focus. It has known a growing interest, giving paralyzed 
people an autonomous system to control their environment. 
brain computer interfaces (BCI) use electroencephalogram 
(EEG) signals as a communication channel between human 
brain and computers [1, 2]. These signals are acquired using 
either planted electrodes on the brain using neurosurgery 
(invasive methods), or electrodes placed on the scalp (non-
invasive methods). BCI applications are meant to drive the 
technology in the area where cerebral activities are utilized 
to prop users in their daily life. Many groups worldwide 
invest more money and time in this new field, predicting 
that it will be the language of the future. 

Event related potential (ERP) [3–6] is one of the EEG 
control patterns used in the EEG-based BCIs. This pattern 
does not need training but necessitates external stimuli. 
P300 paradigm is used by this pattern to guaranty a very 
effective synchronous mode. The participant focuses his 
attention on a matrix containing the desired command.  
This triggers a P300 response which is a positive wave 
appearing 300 ms after the onset of the desired row or 
column holding that action. while the rows and columns of 
this matrix illuminate continuously and arbitrarily in front 
of the user, the later is counting how many times the 
desired command gleams [7]. An instantaneous 
interpretation is done by BCI, as soon as a stimulus 
response is detected. This response is then translated into 
commands that match the user's desire, and a control can be 
sent at a particular time. The row/column (RC) paradigm is 
the most used in BCI field. In this paradigm, a P300 
response necessitates two correct identifications: one for the 
corresponding column and another one for the 
corresponding row. As a result, the ERP segments related to 
the rows and the one related to the columns are classified 
together.  

A wrong identification of a column or a row causes a 

misclassification, which decreases the system accuracy. 
According to [8] classifying column and row samples 
independently, then combining the output of the 
classification would enhance the system performance and 
increase the selection speed and number of sequence 
needed to take a decision. This approach presents better 
results than classifying row and column together. It reduces 
44 % the number of stimulations needed to reach an 
accuracy of 100 %.   

One of the drawbacks of the conventional P300 based 
BCI is that the synchronous system does not take in 
consideration the current user state. Moreover, it depends 
on the stimulation and the number of stimulation sequences 
set in advance by the user. If the user is involved with 
another task, the system will not wait for the user to 
intervene; it will make its own decision. As a result, the 
user has to monitor visually the interface continuously, 
since he can’t neither start nor stop the BCI system.  It 
would be helpful if the BCI system detects whether the user 
wants to send a control command or not. The solution is 
that the user interacts with the interface in an asynchronous 
way. To achieve this goal, it is important to know at any 
given time, if the user is paying attention to the system or 
not. This requires a real distinction between two user states: 
the control states where the subject is concentrating on 
target icon, and the non-control state where the user does 
not pay attention to any icon on the interface. 

According to methods used to identify the control state, 
we can distinguish two types of asynchronous P300 based 
BCI: those based on hybridization of EEG signal patterns 
[9–11], and those based on statistical P300 amplitude 
patterns. Zhang et al [12] proposed a first computational 
methodology to create an asynchronous P300 based BCI 
using a statistical and probabilistic model. They developed 
an algorithm which, at first, identifies the control state, then 
looks for the target, providing a classification result after 3 
rounds at least. Another work from F. Aloise et al. [13] 
presented a dissimilar approach helping to control real 
demotic appliances, and it was demonstrated to be 
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trustworthy in avoiding false positives when the users were 
not focusing on the stimulation interface. Nevertheless, they 
didn’t provide any enhancement in speed selection in 
respect of a synchronous system. They validated their work 
with participants of potential end users [14]. 

In this paper, we were inspired by the works released in 
[8] and [13] to demonstrate a new asynchronous 
classification approach, that uses a separate row and 
column classifier. Our method will allow to build an 
asynchronous P300 based BCI to control home appliances, 
where a subject can switch a device ON/OFF for attaining a 
self-paced control. The reminder of this paper is organized 
as follow: Section 2 describes our motivation and the 
proposed approach. Section 3 describes technical details 
and system paradigm. Experiment results and discussion 
are presented in Section 4, and finally, Section 5 will 
summarize our study. 

2. THE PROPOSED APPROACH 
The P300 wave is well known by its amplitude and 

latency. they are considered as the most characterized 
features of P300 wave [15–17]. The variation of those 
characteristics depends on different conditions such as age, 
gender , physical conditions, and user’s state [18, 19], in 
addition to the size of the matrix displayed to the subject 
[20, 21]. To identify the P300 response, we studied the row 
samples and column samples separately. Firstly, we divided 
dataset to two subsets corresponding to the rows and 
columns. Secondly, we calculated the score values related 
to each subset individually. Therefore, the score values of 
each new sequence are accumulated to the previous 
sequences within the same trial. Threshold values are linked 
to the number of added sequences in the trial. At the end of 
each sequence, the maximum rows and columns values are 
matched to the specific threshold. If thresholds exceeded 
simultaneously because of the maximum row and column 
values, the system would classify the icon at their 
intersection. Inversely, if the threshold values did not 
exceed throughout the maximum number of stimulation 
sequence fixed a priori (10), the system would abstain from 
taking a decision.  Figure 1 illustrates the flowchart of the 
proposed method. 

2.1. MATERIALS AND METHODS 
To develop an environmental control based BCI, a 

dataset representing a full record of “P300 evoked 
potentials” was recorded with an asynchronous approach, 
which is implemented within BCI2000 framework. As it is 
showed in Fig. 2, a non-blinking cross symbol was fixed, 
located in the interface center, and used in some no-control 
trials [13]. In these experiments, 16 icons were introduced 
as a target with the same frequency for the synchronous and 
the asynchronous mode in order to have the same icons 
probability appearance for further analysis. A user focused 
his attention on one of these icons at the time. In the 
synchronous approach, the goal is to predict the desired 
icon. While in the asynchronous mode, 15 icons were used 
for control trials, and the last icon (a smiley face) was never 
used as target in the alternate runs for the reason that it 
indicated the no-control trials to the subjects. 
 

 
Fig. 1 – Flowchart of proposed method. 

 
Fig 2 – 4x4 matrix used in the study. 

Six healthy subjects participated in the study. All the 
subjects took two acquisition sessions over two weeks. 
Each session contains five runs as presented in Fig. 3. Two 
of them define the control trials. The other 3 runs represent 
the alternate runs. Scalp EEG potentials were recorded 
(g.USBamp, gtec, Austria, sampling rate 256 Hz) from nine 
positions according to 10–20 standard: Fpz, Fz, Cz, Pz, Oz, 
P3, P4, PO7, and PO8. Each channel was referenced behind 
the ears and grounded at AFz position. 
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Fig 3 – Organization of each session. 

As indicated previously, asynchronous P300 based BCI 
requires real distinction between two user states: the control 
state where the subject is concentrated on a specific item on 
the screen for a number of stimulation sequences fixed a 
priori. Moreover, the no-control states where the subject is 
involved in other things. To this end, we have proposed the 
following protocol:  

Figure 4 represents the organization of asynchronous 
mode. Each run consists of 10 trials that interchange 
between control and no-control trials. In the no-control 
trials, and during the matrix illumination, the subjects are 
asked to perform three dissimilar scenarios in order to 
guarantee that the dataset would include trials representing 
a daily life conditions in which the participant could turn 
his attention from the stimulation interface. 
• In the first scenario, the participants were directed to 

pay their attention on the fixed cross symbol placed in 
the middle of the monitor and ignore the flashing; 

• In the second scenario, the operator asked 
computational questions to the participant who must 
answer them while focusing on the fixed cross symbol; 
and 

• The third scenario, the participants were directed to 
look to the second half of the monitor where a movie 
was played. 

 
Fig 4 – Organization of asynchronous mode: non control runs. 

Whereas, the parameters of the control trials were set 
based on the synchronous mode as it is described in Fig. 5 
which it represents the organization of the control runs. 
Each run in Control mode consists of 8 trials showing the 
moment when the user is engaged with the interface. The 
rows and the columns of the matrix flash continuously and 
arbitrarily in front of the subject while he focuses his 
attention on the desired icon by counting how many times it 
gleams.  

 
Fig 5 – Organization of synchronous mode control runs. 

3. EEG DATA ANALYSIS 
We used offline data to assess the system performance 

and select the best features for the online session. In a 
synchronous P300Speller, the primary objective is to 
determine the P300 waves in the EEG instantly and 
correctly. Thus, the high information transfer rate will be 
guaranteed by the accuracy of this detection. To prepare the 
data for further processing as presented in Fig. 6 it shows 
different stage of P300 classifier within BCI2000. Red 
boxes represent in which level our contribution was.  

3.1. PRE-PROCESSING AND FEATURES 
EXTRACTION 

The EEG signal was split into 800 ms epochs, starting 
from the onset of each stimulus. Moreover, to remove the 
signal’s high frequency, a moving average (MA) filter was 
used as a low-pass filter [18, 22]. 

Depending on the low frequency response of the P300 
and the sampling rate of the EEG signals the application of 
a down-sampling of 20 Hz on each epoch of 800 ms [21–
23] will decrease the computational complexity. Thus, each 
segment was represented as a vector 144 samples (16 
samples x 9 channel). Each action is modeled as 
characteristics matrix (see eq. (1)): 

 , (1) 

where m = (number of rows + number of columns) x 
number of sequences.   

Afterwards, we set all the outliers to a given percentile in 
order to reduce their effect (subject movement, eye blinks 
and movement, muscle activity) on our data. A 
Winsorization of 80 % was applied: data under the 10th 
percentile were set to the 10th percentile and data greater than 
the 90th percentile were set to the 90th percentile [8, 15]. 

3.2. ERP CLASSIFICATION USING SWLDA 
The main classification problems in the P300Speller 

paradigm are detecting the P300 wave’s presence in the 
EEG signal and selecting the desire action. Differentiating 
between the presence and absence of the P300 wave is 
equivalent to a binary classification problem. As a matter of 
fact, the expectation of the P300 response is related to the 
experiment, and the user. Usually, the subject does not 
generate a P300 wave at a specific time due to various 
artifacts. Indeed, the P300 wave’s generation is not 
happening by awareness, but is generated through the 
matrix’s illuminations at a specific moment [18].  

It is known that the P300’s amplitude differs instantly 
with the relevance of the evoking events and inversely with 
the appearance target’s probability [1, 2, 10]. Usually, a 
target’s misclassification produced an incorrect 
identification of a row (or column) when the resultant 
column (or row) was properly recognized, which decreases 
the classification accuracy [8]. 

As it is figured out in Fig. 6, there is a difference 
between target epochs of columns and targets epoch of the 
rows, while there is no dissimilarity in non-target epochs of 
both column and rows. Furthermore, the R-squared value is 
used to show the feature difference between target and non-
target epochs within rows dataset and columns dataset 
(Fig. 7). It shows that the epochs of columns and rows 
demonstrated marked dissimilarities in their characteristics. 
This variation might carry out a misclassification if we did 
not take in consideration that difference cause   the epochs 
of the columns; it is not same as the epochs of the rows. 
Thus, studying the change in those features might 
discriminate better the target column and the target row 
individually. Hence, we divided the data into two sub-
datasets: columns dataset and rows dataset, which we 
studied separately. For the result, we incorporated each 
classifier’s output to determine the desired command [8]. 
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Fig. 6 –Target not target for each sub-dataset (columns and rows separately) with R-squared. 

 

Fig. 7 – R-squared for each sub-dataset (columns and rows separately). 

By using stepwise linear discriminate analysis (SWLDA) 
on training sets including no-control trials as classification 
method, we can separate between target, non-target and no-
control. Usually, decreasing dimensionality and conserving 
the most essential feature in the model are the linear 
discriminate analysis’s objective that can distinguish 
between the groups, (i.e. reducing the distance between the 
features in the same group, and maximizing the distance 
between the groups). By beginning with no initial model, 
add or remove a characteristic from the model by a mixture 
of forward selection (add the most statistically significant 
element with p value < 0.10) and backward elimination 
(remove the least statistically significant element with p 
value > 0.15) steps, are decided by the stepwise approach 
[11]. Thus, to ensure providing discriminative information 
to the model, significant differences (p value < 0.05) 
between models with and without the current assessed 
characteristic  are evaluated [10, 24]. In this case, The 
discriminate function restricted to include up to 60 spatio-
temporal features to a linear equation that show the highest 
unique variance (i.e. the amplitude value at a specific 
channel location and time sample) [10, 21, 22, 24]. 
Therefore, signal amplitudes at specific times and locations 
were considered for analysis without explicit consideration 

of spatial location. In order to determine the target, the 
columns and rows classification samples were yielded 
separately. We used a training set containing only row 
samples or columns samples for their classification. 

The proposed approach (see Fig. 8) is as follows: 
Primarily, the training set is constructed of two learning 
subsets corresponding only to column and row samples 
respectively. Then, the test sets are constructed of two new 
subsets of tests as the training data. Furthermore, the 
samples posterior probabilities in row (column) training set 
are estimated using row (column) testing set. The samples 
that match to the same row or column flashing were 
gathered [8]. Thus the vector weight is calculated under the 
hypothesis of equal covariance for both classes where noise 
is distributed normally. Discriminant score values are 
calculated as: 

 
sec
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col col

row row
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=
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where w is the weight assigned based on the training data 
and seq

ix represents the EEG data on ith candidate in seqth 
sequence. Each training data is labeled as P300 epoch or 
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non-P300 epoch. The score distribution is assumed as 
normal distribution. The log-likelihood ratio of SWLDA’s 
output belongs to the wanted class (presence of P300) [10, 
25]. The output is presented as the Euclidean distance, 
which (it) is calculated between the projected data and the 
projected mean of the wanted class) [10], as follows: 

 ( ) ( )300, , PI w x w µ= − ,  (3) 

where w denotes the weight vector, x the feature matrix and 
µP300 the mean of the positive class.  

Finally, the results of the preceding classification are 
grouped to classify the main actions of the matrix. In the 
P300Speller paradigm, a couple (x, y) determines an action 
because the intensifications are on each column and row. 
The desired action can be generated by the column and row 
intersection in the matrix with the highest score value from 
each class. Furthermore, the discriminants score values on 
the target row / column represented by: 
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where loc ˆ  and wor ˆ  represent the estimated target column 
and row based on EEG data.  

Thus, the ensemble of target score values denote as:  
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seq
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= = +



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 (5) 

As mentioned before, P300Speller is a synchronous 
paradigm. This indicates that a decision will be made by the 
system whether the subject is focusing on the stimulation 
(the interface was continuously controlled by the subject) or 
not (the subject is in no-control state). Thus, an operability 
mode is necessary to overcome the above states and to 
refrain from a bad decision. In this study, we employed a 
threshold-based approach designed to differentiate between 
control and no-control states.  

4. RECEIVER OPERATING CHARACTERISTIC 
ANALYSIS AND THE THRESHOLD VALUES 

EXTRACTION 
In the beginning, the score values were calculated and 

summed up across the trial, then used to obtain the 
maximum values for each stimulation sequence. The 
control scores are estimated to be greater than no-control 
scores because of the presence of attention in control state 
comparing to the no-control state [26]. Accordingly, the 
distinction between control state and no-control state might 
be happen by using a constant threshold [26]. Furthermore, 
the receiver operating characteristic (ROC) curve plotted 
using the score values for both control and no-control state 
as two dissimilar groups. Thereafter, we grouped the 
maximum scores into two groups. We set the target scores 
to the positive class (label = 1), while the non-target and 
no-control scores to the opposite (label = 0). In this way, 
extracting the threshold by including the maximum score 
values associated to no-control segments in ROC curves 
insure that the occurring artifacts were taken into 
consideration when the participant was in no-control state.  

The labeled scores were used to plot the ROC curve in 
order to extract the threshold values. As presented in Fig. 8, 

the ROC curve describes the relation between the true 
positive rate (TPR) and false positive rate (FPR), which they 
represent an important performance keys in the threshold 
detection. An efficient asynchronous based BCI might find a 
threshold that appropriates for the desired task.  For example, 
a high bit rate is suitable for writing tasks. A speller task 
requires a lower threshold value when demands a higher TPR 
favoring speed over accuracy. Whereas a sensitive task like 
controlling home appliances as it is the aim of this study, 
requires augmentation in threshold value when demands a 
lower FPR preferring the safety concerns over the speed. To 
choose an adequate TPR while conserving FPR lower than a 
given limit, testing each threshold and checking the resultant 
TPR and FPR is needed throughout an offline analysis of the 
EEG data. Choosing the threshold value has a relation with 
finding the trade-off among the TPR and FPR. These values 
were chosen based on work released in [13], choosing the 
specificity (low FPR) regarding the sensitivity as the 
objective of this study is controlling home appliances. 
Therefore, the trade-off between the true positive rate (TPR > 
0.5) and false positive rate (FPR < 0.05) determines the 
threshold values. If the true positive rate was superior to 0.5 
then the intersection of the line through points (0.05, 0.5) and 
(0, 1) with the ROC curve represents the threshold value. 

 
Fig 8 – Threshold value extraction using ROC curve. 

A comparison between the threshold values and the 
row’s maximum score and column’s maximum score was 
made to take a decision. The classification is made at the 
intersection of the maximum score of both column and row 
only if the threshold values are exceeded; otherwise, if the 
number of stimulation sequences reached the reset value 
without overriding the assigned threshold, the system will 
refrain from making a decision, and a new trial will begin 
by assigning the accumulated score values to zero. 

The green point on the curve (Fig. 8) represents the 
trade-off ( thresholdS ) between the values of true positive rate 
(TPR) and false positive rate (FPR). Thus, the classification 
of the desired action is made at the intersection of the 
maximum score of both column and row only if the 
threshold values are exceeded. Otherwise, if the number of 
stimulation sequences reached the maximum number of 
stimulation sequences fixed a priori without overriding the 
assigned threshold, the system will refrain from making a 
decision, and a new trial will begin by assigning the number 
of stimulation sequences to zero. 
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5. RESULTS AND DISCUSSION 
In this study, we presented an asynchronous P300 based 

threshold mechanism to control household appliances. 
Figure 9 reflects the experiment carried out with each 
participant in synchronous mode. The number of 
stimulation sequences was averaged based on the 
percentages of correct classification.  We offer proof that 
the P300 classification could be improved through treating 
and processing data rows and columns separately. The 
results showed that the proposed algorithm can increase the 
P300Speller paradigm’s performance by decreasing the 
number of stimulation sequences needed to reach an 
accuracy of 100 %. The achieved accuracy values and the 
number of stimulation sequences were used to evaluate the 
performance of the system for both synchronous and 
asynchronous system. For asynchronous mode, only the 
control trials were taking in consideration. 

 
Fig 9 –  Accuracy for synchronous system. 

The accuracy for asynchronous system divides on two, 
depending on control state and non-control state as it shown 
in Fig 10. The accuracy of control state is estimated as follow:  
1. Correct classification: correctly determined the result. 

2. Wrong classification: erroneous determined result. 
The accuracy of non-control state is estimated as follow: 

1. Abstention: BCI system does not generate result. 

2. Missed abstentions: The subject does not focus n 
interface but the system generates unwanted random 
control selection.  

Furthermore, the detection thresholds criterion 
determination is one of the essential concerns for the 
asynchronous P300 based BCI system; it has a strong relation 
with the desired application. The detection of the attended 
command based on the user’s desire using the implemented 
threshold mechanism offers the user an easy experiment, by 
rejecting the unattended choices during the no-control state, 
and at the same time keeps the control state selections.  
Figure 10 shows the ability of our system to avoid 
misclassification to achieve an average of 90 % for correct 
classification and 10 % for misclassification. The robustness 

of the system is shown through the classification’s abstention 
(i.e. the system abstains from making a decision) results that 
yielded an average of 84.44 %.   

A comparison between the present work and the different 
studies cited in section 1 is hard because the dissimilarity in 
the classification methods, the paradigms applied, the number 
of subjects used in experiments, and specifically in the 
evaluation of the system performance. F. Aloise [13] reported 
on average of 88.73 % of correct classification, and the 
system’s ability to abstention reached on average of 98.91 %. 
Nevertheless no important enhancement in speed selection 
could be attained in respect of a synchronous system.  

 
Fig. 10 – Asynchronous performance using alternate runs. 

In addition, the classifier performance of each subject 
depends on the control state threshold, which is computed 
from the SWLDA scores. Hence, frequency characteristics, 
which are necessary for the detection of the correct state, 
could enhance the application performance by making the 
control state threshold independent of the scores’ classifier. 
Nowadays, hybrid BCIs are promising, and there are many 
studies carried out on this field. It is a well-known fact that 
there is no easy way to modify the flashing of the 
P300Speller. In BCI2000 framework the use of different 
flashing frequencies forces many research groups to use 
different software. Thus, it is an interesting research idea 
using a mixture of Pinegger et al. proposal [27] and our 
approach by using the proposition that when a user is focusing 
at the illumination of the stimulation interface the frequency 
of illumination is indicated more or less marked in the signal 
from the occipital electrodes. The shape of this signal is 
similar to a steady state visually evoked potential (SSVEP) 
signal without concentrating on an attended command. 

9. CONCLUSION 
Transferring the BCI systems from a lab models to a real-

world is a challenging task. Numerous technical enhancements 
are still required to use assistive technologies based BCI 
systems by paralyzed people in their own environmental 
control. One of the drawbacks of synchronous system is 
performing a selection in each N seconds which might increase 
the unattended choices and interaction difficulties.  

This study offers some propositions to overcome the 
drawbacks of the traditional synchronous based BCI 
systems, by introducing an asynchronous mechanism which 
might suspend the control when the subject is not in the 
control mode and abstain from making a decision when 
there are not many features to decide. Therefore, the data 
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was divided into two datasets, rows dataset, and columns 
dataset. Each dataset was treated and processed separately. 
Then, combing the classifiers’ outcomes to identify the 
wanted action. The threshold mechanism was based on the 
ROC curve. In each new sequence, we accumulated the 
score values to the previous ones, and we matched the 
maximum scores of the rows and the columns to the chosen 
threshold. If they passed at the same time a selection will be 
made. Otherwise, the system abstains from making a 
decision. The results were so promising with the proposed 
approach. It’s carried out a correct identification of the 
target on average of 91.76 % with abstention of 81.66 %. 

Received on July 2, 2018 
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