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Complex-valued neural networks (CVNNs) are extensions of the classical neural 
networks, which have complex-valued weights, accept complex inputs and have more 
computational power than the classical ones. We present the structure and function of 
the phase-based neurons (PBNs), a simple type of CVNNs that uses as weights and 
biases complex numbers with magnitude 1, the phase being the only tunable parameter. 
We provide an adaptation method for PBNs and show that PBN based CVNNs  have 
more computational power than classical artificial neural networks (ANNs), being able 
to implement some non-linearly-separable mappings, such as the XOR logical function. 
We show that the PBS has many features found in a class of biologically plausible 
neural networks called the phase based spiking neuron. 

1. INTRODUCTION 

1.1. COMPLEX VALUED NEURAL NETWORKS 

The complex-valued neural networks (CVNNs) are artificial neural networks 
that deal with complex valued information by using complex-valued parameters 
and variables. The history of the CVNNs started back in 1971, with [1], written by 
N.N. Aizenberg and his team in the former Soviet Union. The paper was published 
during the so called “Artificial intelligence winter”, a few years after the Minsky 
and Papert famous report [2] that showed the limitations of single-layer 
perceptrons. These ANNs binary classifiers, introduced by Rosenblat [3], cannot 
learn an exclusive disjunction (exclusive OR/XOR) function, because of their 
limitation as linearly-separable domain classifiers. Introducing additional hidden 
layers is not the only solution to this problem, another one being the use of a single 
neuron with complex valued weights [4]. 
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1.2. THE UNIVERSAL BINARY NEURON 

The universal binary neuron (UBN) and the multi-valued neurons (MVN) are 
the component of the research field on CVNNs started by N.N. Aizenberg and 
continued by I.N. Aizenberg [1, 4–6].  

An UBN operates with complex-valued weights and bias, and has a complex-
valued activation function, which depends only on the argument of the weighted 
inputs. The activation function is a P-realizable Boolean function over the field of 
complex numbers for an input vector x with n elements and an associated weight 
vector w (including a supplementary parameter w0 as bias), both with complex 
entries. We will use [6] to introduce the theoretical framework of the UBN. 
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The UBN computes the output using just the phase of z – the net input (inputs 
weighted sum) and its position in the complex plane divided into an even number 
m of equal sectors, where h is the sector index. The output y = f(x1,…, xn) in (1) is 
+1 in the even sectors and –1 in the odd ones. Only the phase of the neuron inputs 
weighted sum z is significant for the output, its amplitude having no influence on it.  

In Fig. 1 we show the behavior of PB function for m = 4. The output is 1 for 
the net input in quadrants I and III, and –1 in quadrants II and IV. 

 
Fig. 1 – Activation function using a P-realizable Boolean function with m = 4 sectors. 
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complex conjugate of the input, in order to move the net input along the unit circle. 
They give excellent results in solving various recognition and classification 
problems, including some with rather complicated decision rules [4–6]. 

2. THE PHASE-BASED NEURON 

2.1. THE PHASE-BASED NEURON MODEL 

The UBN uses two parameters for each complex weight, the real and the 
imaginary part (or the magnitude and the phase). This approach is essentially 
different from the one used in classic neural networks, where weights are single 
real numbers. The fact that the output of the UBN is given by the phase of z – the 
net input, provides the idea to work only with phases as parameters of the network. 
In [7] we proposed the phase-based neuron (PBN), a simpler CVNN for which 
every weight is a complex number with a fixed modulus 1 and a phase φ – the 
tunable parameter of the weight: 

 kkw ϕ∠= 1 . (3) 

The output of the network is computed the same way as in the case of UBN, 
by using the function PB defined in (2). In PBN, a weight just rotates the 
corresponding input according to its phase and the challenge is to find the 
appropriate phases that will rotate the inputs such that the net input, their sum, will 
be placed in the right type of sector for any given pattern.  

2.2. IMPLEMENTATION OF THE XOR FUNCTION 

In the following, we present the potential of the PBN to solve the exclusive 
OR (XOR) problem.  

We chose the weights using a heuristic search: 
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The values of the inputs, activation and of the outputs for the four patterns are 
shown in Table 1 and the corresponding mapping in the complex plane is 
represented in Fig. 2. 

Table 1 

Heuristic solution of the XOR problem using PBN 
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Fig. 2 – Weights w1, w2, and w0 and net inputs z(1), z(2), z(3), and z(4) for data defined in Table 1.  
Filled circles correspond to positive outputs, empty circle to a negative output.  

2.3. TRAINING FOR PBN 

As shown on Fig. 3, we denote by ψ the net error – the phase difference between 
the target t and the net input z, and by ψ k the kth input error – phase difference 
between the target t and the weighted input phase wkxk. 

Several adaptation methods for a given pattern are given in [9]. They can 
minimize ψ directly or by minimizing the phase differences ψk. For more than one 
pattern, the updates are computed for each pattern and batch learning is used. 

In PBN, a weight just rotates the corresponding input such that the net input 
is placed in the correct type of sector for any given pattern. Increasing the number 
of sectors, we boost the representation power of the neuron, i.e., nonlinearities it 
can cope with, but we also increase the overfitting risk. 
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Fig. 3 – Training for PBN. 

3. BIOLOGICALLY PLAUSIBLE NEURONS 

3.1. SPIKING NEURON MODELS 

A biological neuron receives action potential (spikes) from the afferent 
neurons and, after their processing as inputs, can issue a spike to participate at the 
activation of the efferent neurons. Even if there are several thousands of neuron 
types, their structure is essentially similar. A neuron adds-up in soma the input 
information from other neurons, whose axons are connected to its dendrites 
through synapses. When certain conditions are fulfilled, an action potential is 
triggered and travels down the axon to synapses connecting with other neurons.  

The leaky integrate-and-fire model reproduces electrophysiological data 
with good accuracy. It consists of a capacitor C in parallel with a resistor R driven 
by a current I(t), as in Fig. 4. A presynaptic spike δ(t) is low-pass filtered at the 
synapse (Fig. 4a) and generates an input current pulse ε(t) that sums up in the soma 
of the neuron. When the membrane potential u(t) exceeds a given threshold ϑ , it 
fires, sending a spike to the efferent neurons, like in Fig. 4b. 
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Fig. 4 – Equivalent electrical circuit for synapse (a) and for soma (b). 
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The spiking response model defined in [10] describes the state of a neuron 
by a single variable u, using kernel functions for different aspects of its behavior. 
Its state is the summation of presynaptic pulse-response functions, a self-spike 
response function and an external input function. The neuron fires if u reaches a 
threshold ϑ  from below. The firing time t(f) is defined as the moment when 

 ϑ=)(tu  and 0
d
d

>u
t

. (5) 

 
Fig. 5 – Spike response model, from [10]. 

Due to its time-only dependence, it is used to avoid integration methods and 
time-driven simulation. Determining the next threshold-crossing point, i.e., the next 
firing time, an event driven approach to the simulation can be applied. 

Different functions are considered for ε, from very simple ones to some more 
plausible. In Fig. 6 there are shown some of these functions. 
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3.2. INFORMATION MAPPING 

The way the data is represented in ANNs is one of the fields where ANNs 
challenge the biological systems [11]. Starting from the inputs, there were tried 
several methods for the neural system models, that encode real, integer or binary 
values to the properties of the PSPs that enter the network. They include rate code, 
count code, binary code, timing code, synchrony based code, rank order code and 
delay coding [12]. These encodings are more or less natural, but mechanisms that 
drive them are the spike timing, phase, or correlations [10].  

Because time is continuous and it is included in the spike equation, we can 
encode with a single spike any analogue number x as a spiking time x+T, where T 
is a given reference time. This version of timing coding, named in many papers as 
“delay coding”, is used for problems addressed formerly by the classical ANNs. 

4. PHASE-BASED SPIKING NEURON 

4.1. PARAMETERS 

We will propose here the Phase-Based Spiking Neuron (PBSN), a spiking 
neuron that is inspired by the PBN. The PBSN has the following features: 

• The PSP is made by a finite sequence of sine waves. The number of waves 
is given by the maximum time lag induced by input encoding plus one period, 
pledging the proper summation of PSPs. For convenience, the frequency of the sine 
is taken 1 Hz. In Fig. 7 it is shown a PSP for two binary inputs with delay coding. 

• The input encoding method is the delay coding, as described in 3.2. An 
input will be the PSP delayed by a time equal with the value of the input expressed 
in seconds. For binary inputs, the input 1 is coded with no delay and the input –1 is 
coded with a delay of 0.5 s, corresponding to a phase delay of π radians. 
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Fig. 7 – Phase-based spiking neuron PSP for the XOR problem. 
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• The weights are represented by delays of the inputs. For causality reasons, 
they are positive numbers from 0 to 1s, corresponding to phase delays from 0 to 2π. 

• The output is given by the time interval when the net input reaches the 
threshold ϑ= 0 from below. The time window where u is evaluated starts 1 second 
after the maximum delay given by the input encoding. The interval is divided into 
4 periods of 0.25 seconds (corresponding to the quadrants in the complex plane). If 
the threshold is reached in the odd periods, the output is 1 and if it reached in the 
even periods, the output is –1.  

4.2. XOR PROBLEM USING PBSN 

We will use the XOR problem to illustrate the effectiveness of the PBSN and 
to emphasize the similarities with the PBN. The nonlinear problem and its heuristic 
solution from Table 1 will be transferred in the time domain.  

In Fig. 8 you can see the PBSN carrying out the XOR function. 
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Fig. 8 – XOR problem implementation with PBSN. 

The waveforms corresponding to the inputs for all the 4 patterns from Table 1 
are shown in the plots A1–A4. They are sine waveforms with two periods, like the 
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PSP from Fig. 7. For the input value being 1 (including the value 1 associated to 
the bias), the delay is 0. When the input is –1, the waveform is delayed with 0.5 
seconds (the equivalent of π). The synapses will influence these inputs with 
postponements of 0.875 s, 0.125 s, 0.625 s, corresponding to phase delays of 7π/4, 
π/4, 5π/4, as shown in the plots B1–B4. The phase delays are equivalent with the 
heuristic phases from (4.), having positive values for causality reasons. In the plots 
C1–C4 from Fig. 8, we have the sum (integration) of the delayed PSPs from the 
plots B1–B4, respectively. The expectation time sectors are represented with 
colored bars and the firing time is highlighted as a small disk. It is established 
corresponding to (5), being the time when the potential u reaches the threshold υ 
equal to 0 V from below. The firing is placed respectively in the time sectors 2, 1, 
3, 2, resulting in the outputs –1, 1, 1, –1, equal with the targets for the XOR 
problem. 

The summation of presinaptic pulse-response function is approximately a 
sine-wave for the evalution time-window, because in it we add just full waves sine 
waveforms. This implies that inside this window the sum of kernel functions can be 
done in the simpler phasors domain. 

4.3. PBSN TRAINING 

Because the PBSN has the phasor representation identical with PBN for the 
expectation windows, the training methods using error minimization from [9] are 
valid as well. The most natural one is the direct minimization for the PBN, where 
the weighted inputs rotate in order to minimize their phase error ψk (Fig. 3). The 
update of a weight for a given pattern is proportional with the phase difference 
from the target to the weighted input. The update for all the targets is computed as 
the sum of updates, using the batch learning.  

This is translated in the following training algorithm for PBSN: 
1. Take random delays for each input; 
2. For each pattern m, compute the net input u (integration of the delayed 

PSPs), the firing time and find out the appropriate target (the center of the closest 
time sector). If all the firing times are in the right time sectors, stop the algorithm. 

3. For the given pattern, compute the update for the input delay, proportional 
with the difference from the target to the delayed input. 

4. Calculate the update of each input delay as the algebraic sum of that input 
delay updates computed for each pattern. 

5. Update the time delays. 
6. Go to step 2. 
This novel spiking neuron has an adaptation method that is equivalent in the 

phasors domain with the training method for the PBN that was presented in [7] and 
[8]. That method is shown to give good results for two inputs binary problems.  
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The training for PBSN is extremely plausible, having the meaning that the 
synapses adapt by delaying the inputs towards the target, taking into account the 
whole set of patterns to be learned. 

5. CONCLUSIONS 

We presented in this paper the Phase-Based Neuron, a simplified version of 
the Universal Binary Neuron. The PBN uses just a single parameter per complex 
weight – the phase. Gradient descent methods are currently being applied for the 
implementation of the parity function, a generalization of the XOR function. 

The PBN has a biologically plausible counterpart, the PBSN, an integrate-
and-fire neuron with a sine-type PSP. The PBSN has a spiking response model 
reduced to phasor addition due to the inheritance of the properties from the PBN, 
making it simpler to be implemented. 
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