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The periodicity condition of state variable ensures the circuit periodic steady state. 
Circuits with linear dynamic elements and nonlinear resistors can be solved iteratively 
using the method of equivalent sources, by replacing the nonlinear resistors with 
controlled sources having constant resistance throughout the iterations. The final values 
of the state variables appear as affine functions of their initial values and only the 
additive term changes iteratively. By imposing a periodicity condition the initial values 
of the state variables are obtained by solving a linear system of equations in which the 
system matrix remains unchanged during each iteration and only the right hand side is 
modified. This matrix is inverted only once before the iterations begin. 

1. INTRODUCTION 

The most popular method for solving periodic steady state of nonlinear 
circuits is the brute force, often used by the commercial simulators. By choosing 
arbitrary initial values for the state variables the transient analysis is performed 
until an asymptotic solution is reached. Even if various acceleration procedures are 
used [1–2] the computation time can become huge especially if the circuit has 
“large time constants”. An important speed-up is obtained by handling the 
nonlinearity using the Equivalent Sources Method (ESM) [3] and applying the 
numerical form of the convolution integrals on time intervals. In [4] this technique 
was successfully applied for circuits having sources with large frequency 
differences. 

The harmonic balance method can solve this problem also, but it leads to a 
large computation time if the nonlinearities are strong or if the sources have a 
broad spectrum of harmonics. Using ESM the circuit is solved for each harmonic 
[5]. The harmonics spectrum is progressively enlarged starting with a reduced 
number of harmonics and selecting the most relevant harmonics of the equivalent 
sources. 
                                                           

1 “Politehnica” University of Bucharest, 313 Splaiul Independenţei, 060042 Bucharest, 
Romania, E-mail: marian.vasilescu@upb.ro 

2 ICPE SA, Spl. Unirii 313, 030138 Bucharest, Romania 



 George Marian Vasilescu et al. 2  

 

340 

In this paper a new procedure for finding the periodic steady state of 
nonlinear circuits is presented. The method is based on ESM and on imposing the 
state variable periodicity. The nonlinear resistive elements are replaced by linear 
generators for which the sources are nonlinearly controlled by the resistor voltage 
or current. Except the equivalent sources, the parameters of all other electrical 
elements remain unchanged for each iteration, allowing superposition. The state 
variables are determined by convolution integrals represented as invariant vectors 
for all iterations. These vectors are computed only once, before starting the 
iterations. The state variables are easily obtained by multiplying them with the 
source vectors. The periodic steady state is imposed by enforcing the initial values 
of the state variables be equal with their final values at the end of the period. A 
system of equations results, having the same matrix for all iterations and the right 
hand side (r. h. s.) changing. This matrix is inverted only once, before starting the 
iterations. The controlling quantities of the equivalent sources are then determined 
and the sources voltages are corrected for the next iteration.  

2. ESM TREATMENT OF THE NONLINEARITY 

The nonlinear resistive elements are grouped as a p-port and, for simplicity, it 
is assumed that the port voltages u are the controlling quantities ( )ui F̂=  at any 
time t∈[0, T], where T is the excitation period. The function pp RRF →:  is 
assumed Lipschitzian 

 ( ) ( ) pRFF ∈∀−Λ≤− yxyxyx , ,  (1) 

and uniformly monotone 

 
( ) ( ) 0,,, 2 >λ∈∀−λ≥−− pRFF yxyxyxyx

. (2) 

ESM replaces the nonlinear p-port with p voltage generators described by 

 kkkk eiru += , (3) 

where the source voltage ek is a non-linear function of u [1] 

 ( ) )(ˆ uu kkkkk HFrue ≡−= , (4) 

where kF  and kĤ  are the components of the functions F  and Ĥ . It can be 

proved [3] that if rk is chosen as ⎟
⎠
⎞⎜

⎝
⎛ Λλ∈= 22,0rrk , k = 1,2,...,p, then Ĥ  is a 

contraction ( ) ( )ˆ ˆ θx y x y gg
H H− ≤ − , with the contraction factor 
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121 22 <Λ+λ−=θ rr . In this case the scalar product and norm are defined as 
Gvuvu T, =g  and Guuu T2 =g , respectively, where G is the conductance 

diagonal matrix (Gkk = g = 1/r) defined for the nonlinear elements and T denotes 
the transpose. If the constitutive relations are time-invariant, then Ĥ  is also a 
contraction on [ ]TR p ,0×  and (1) becomes 

 ( ) ( )
TgTg

HH ,,
ˆˆ yxyx −θ≤− , (5) 

where ∫=
T

o
gTg td,, , vuvu , and ∫=

T

gTg t
0

22
, duu . 

In the case of a nonlinear one-port resistor, conditions (1) and (2) correspond 
to a strictly positive increasing bounded function. The conductance can be chosen 

as 
2

1 mingg
r

>=  and a contraction factor ( )1,1Max maxmin −⋅⋅−=θ grgr  is 

obtained [1, 2], where ( ) ( )
uu

ufufg
uu ′′−′

′′−′
=

′′′,min Inf , ( ) ( )
uu

ufufg
uu ′′−′

′′−′
=

′′′,
max Sup , and 

)(ufi =  is the u-i resistor relation. The smallest value of the contraction factor is 

minmax

minmax
opt gg

gg
+
−

=θ  and is obtained when 
2

1 minmax
opt

opt

ggg
r

+
== . 

If the resistive elements are current or mixed controlled our method remains 
valid by using a dual formulation.  

3. THE NEW METHOD USING ESM FOR SOLVING THE PERIODIC 
STEADY STATE 

The steps for the periodic steady state computation of the nonlinear circuit 
are:  

a) The matrix which gives the final values of the state variables from their 
initial values is computed. The final values are not known yet at this point. This 
matrix is evaluated only once and remains unchanged for all iterations. 

b) Arbitrary initial values e(1) for the equivalent sources voltages are chosen. 
c) Having the e(i) sources voltages and the independent sources voltages s 

their contribution to the final values of the state variables (at time t=T) are 
computed. Knowing these contributions and the matrix from a), the initial values of 
the state variables are computed as a result of the repetition condition of the state 
variable after one period. 
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d) Having the sources s, e(i) and the state variables, the control quantities 
( ) ( ))(ˆ ii L eu =  are computed by solving a linear circuit.  

e) The sources voltages )(ˆ )()1( ii H ue =+  are corrected. 

If the error )()1( ii ee −+  is not small enough the algorithm returns to step b). 

The convergence. The circuit is assumed to have NR linear resistors, NL 
inductors and NC capacitors. Let (u′,u″) and (i′,i″) be two solutions of the linear 
circuit which correspond to the (e′,e″) sources voltages and let Δu = u′–u″, Δi = i′–i″ be 
the difference solution corresponding to the Δe = e′–e″ difference. The voltage 
difference is zero for the independent sources. Having a linear circuit, Tellegen 
theorem gives 

 

2 2

1 1 1

1 1

, ( ) ( )

dd
0.

d d

N

u i
R

CL

N p p

k k k k k
k k

N

r i g u g u e

uii L u C
t t

ρ ρ
ρ

γλ
λ λ γ γ

λ γ

= = =

= =

Δ Δ = Δ + Δ − Δ Δ +

ΔΔ
+ Δ + Δ =

∑ ∑ ∑

∑ ∑
 (6) 

Integrating over a period and taking into account the periodicity condition of 
the state variables, the previous relation becomes  

  0dd)(d)(
0 10 1

2

0 1

2 =ΔΔ−Δ+Δ ∫∑∫∑∫∑
===ρ

ρρ

T p

k
kkk

T p

k
kk

T N

teugtugtir
R

. (7) 

Because the first term is positive one obtains  

 0dd)(
0 10 1

2 ≤ΔΔ−Δ ∫∑∫∑
==

T p

k
kkk

T p

k
kk teugtug  or TgTg ,

2
, , euu ΔΔ≤Δ . (8) 

Therefore TgTg ,, eu Δ≤Δ . So, the function L̂ , that relates the u solution to 

the e sources voltages by solving the linear circuit, is non-expansive. Because Ĥ  
is a contraction, the iterative method described in steps a), ..., e) is a Picard-Banach 
procedure, that converges at the fixed point of the composed function LH ˆˆ . 

4. THE ANALYTIC SOLUTION OF THE LINEAR CIRCUIT  

In order to simplify the presentation, a RC circuit is analyzed, the state 
variables being the capacitor voltages only.  

The currents at the ports where the capacitors are connected are 
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t
c

cecsccc d
duCeGsGuGi =++−= , (9) 

where C is the capacitors matrix (a diagonal matrix if the capacitors are not 
coupled), Gc is the positive defined symmetric matrix of the ports conductances 
where the capacitors are connected to, Gcs is the matrix of the transfer 
conductances between the ports where the independent sources are connected and 
the capacitor ports, Gce is the matrix of the transfer conductances between the ports 
where the equivalent sources are connected and the capacitors ports 

 
,

,
1,
0

s 0 e 0

for
l m l

cm
ck

c c u
u k m

G i = =
=
= ≠

= − ,
,

,
1,
0

u 0 e 0

for
cl m l

m
k

cs c s
s k m

G i = =
=
= ≠

= − , 

(10)

 

 
,

,
1,
0

u 0 s 0

for
cl m l
m
k

ce c e
e k m

G i = =
=
= ≠

= − . 

From (9) the following equation is obtained 

 fQePsαuu
≡+=+ c

c

td
d , (11) 

where α = C–1Gc, P = C–1Gcs, Q = C–1Gce. The solution of equation (11) is 

 )0(ed)(ee)(
0

c
t

t
t

c t ufu ααα −τ− +ττ= ∫ , (12) 

where e-αt is a matrix function. From the capacitor voltage periodicity condition 
uc(T) = uc(0), the initial value is obtained as 

 ∫ ττ−= τ−−−
T

TT
c

0

1 d)(ee)e1()0( fu ααα  . (13) 

The voltages at the ports of the nonlinear resistor are 

 )()()()( tttt cDuBeAsu ++= , (14) 

where A, B, D are the transfer matrices between the ports where the independent 
sources, the equivalent sources and the capacitors, respectively are connected and 
the ports l where the nonlinear resistors are connected 

,, 1,
0

u 0 e 0

for
c

m
k

l m l s
s k m

A u = =
=
= ≠

= ,    ,, 1,
0

u 0 s 0

for
c

m
k

l m l e
e k m

B u = =
=
= ≠

= ,     
,

,
1,
0

s 0 e 0

for
l m cm

ck

l u
u k m

D u = =
=
= ≠

= .(15) 
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The P, Q, A, B, D, e–αt and (1–e–αt)–1 matrices are computed only once, before 
the first iteration.  

The numerical solution. The previous method can be easily applied only in 
the case of at most 2 x 2 matrices. Unfortunately, in the case of circuits with many 
state variables, the computational effort required for the computation of the matrix 
function e–αt is significant.  

However, the proposed method can be easily applied for the case of 
complicated circuits, by employing a numerical method for solving the linear 
circuit.  

The [0, T] interval is divided in N equal subintervals [tn, tn+1]=[(n–1)Δt, nΔt], 
where Δt = tn+1 – tn. By assuming on the [t1, t2] interval the following excitations  

 [ ]Ttttem ,0for1 ∈Δ−=′ , elsewhere0=′me , (16) 

and 

 [ ]ttttem Δ∈Δ=′′ ,0for , [ ]tttttem ΔΔ∈Δ−=′′ 2,for2 ,  

 elsewhere,0=′′me , (17) 

for the independent and controlled sources, the linear circuit response at any linear 
excitation on the [tn, tn+1] interval can be obtained. Thus, only the computation of 
the circuit response vectors to the excitations in (16) and (17) is required. The 
transient response to the (16) and (17) excitations could be obtained numerically 
using the companion circuit. Each [tn, tn+1] interval is divided in equal intervals. 
When employing nodal analysis, the system matrix remains unchanged and only 
the r. h. s. modifies as a function of the considered sources. The circuit response at 
the initial unitary values of the state variables is obtained with the same matrix. 
The initial values of the state variables are obtained by imposing the periodicity 
condition. Then the values of the control quantities are evaluated. The iteration is 
finished by correcting the voltages of the controlled sources with (4).  

In a following paper we will present in detail the numerical method for 
solving the periodic steady state of the linear circuit and the important advantages 
that follow from applying the presented method.  

5. NUMERICAL RESULTS 

The independent pulsed voltage source s in Fig. 1 has amplitude s0, period T 
and pulse width tc (Fig. 4), being described by  

 ( )
⎩
⎨
⎧

∈
∈

=
),[for,0
),0[for,0

Ttt
tts

ts
c

c . (18) 
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The diode nonlinearity is given by the slopes of the half-lines of the u-i 
characteristic from Fig. 3. 

              

Fig. 1 – The nonlinear circuit. Fig. 2 – The linear circuit with the 
nonlinear voltage controlled e 

source. 

Fig. 3 – The current-voltage 
characteristic of the nonlinear 

element. 

Figure 2 shows the “linear” circuit in which the nonlinear element has been 
replaced by the voltage generator containing the voltage source e(u) controlled by 
voltage u at the generator terminals. The generator resistance was chosen r0=1/gmax, 
giving a contraction factor of θ=1 – gmin/gmax. Due to the simple nature of the 
chosen circuit the linear circuit can be solved analytically at each iteration. The 
interval [0, T] is divided in N equal intervals Δt, so that tc/T = nc/N. The equivalent 
sources are assumed to have a linear variation on the intervals. 

 ))((1)( 1 kkkk eett
t

ete −−
Δ

+= + , k = 1,2,…,N, (19) 

where ek = e(tk). Due to the simple nature of the circuit the matrices P, Q, A, B, D,  
e–αt, (1–e–αt)–1 become numbers: 
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−==
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For time tn+1 = nΔt, (12) becomes 

 )0()()( 11 1;1;1 cnccccnc uuuutnutu
nensn ++ Γ++==Δ=
+++

, n = 1,2,…, N, (20) 

where Γn+1 = e–αnΔt, n = 1,2,…,N, Γ1=1 and  
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 ⎩
⎨
⎧
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+−+
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cnnn

c

cs
c nns
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G
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ns for,)1(

for,)(

01

011
1; ,

  
0
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=

scu ,
 (21) 

 
( ) ( )

nene cnnnn
c

ce
c uee

t
ee

G
Gu

;1; 21221 )1(1
Γ+⎥⎦

⎤
⎢⎣
⎡ −Γ−

Δα
−Γ−= +++ ,   0

1;
=

ecu .        (22) 

From the periodicity condition )0(
1 cc uu

N
=

+
 the initial value of the capacitor 

voltage is obtained 

 
11

)0( 1;1;

+Γ−

+
= ++

N

cc
c

NeNs
uu

u . (23) 

The voltage 
1+ncu  can be calculated with (20) and the voltage 1+nu  with (14) 

 1111 ++++ ++= ncnnn DuBeAsu ,  n = 0,1,2,…, N. (24) 

Replacing (24) in (4) the new voltage e of the equivalent source is obtained. 
Example 1. The circuit parameters are chosen as R = 10 Ω, s0= 2 V, T = 10–3 s, 

tc/T = 0.2, Rs = 10 Ω, C = 10 μF and gmin = 10–6 Ω–1, gmax= 1 Ω–1 which gives a 
contraction factor θ = 0.999999. The contraction factor is very close to, but smaller 
than 1 and thus, is an assurance of the convergence.  

 
Fig. 4 – The transient response of the circuit to the voltage source s. Voltages u and uc are obtained 

with the proposed method. Voltages uc(SPICE) and u(SPICE) are obtained with SPICE. 

The problem was solved with the proposed method and with SPICE. The 
variation with time of the voltages from Fig. 1 are shown in Fig. 4. 



9 Solving the periodic steady state of nonlinear circuits 347 

 

For the proposed method the period was divided in 4 000 equal intervals and 

a relative error of ( 1) ( )

0

1er i ie e
s

+= −  < 0.96.10–7 was reached after 148 iterations. 

It can be said that the solution is located in a sphere of the exact solution e* of 

radius [3] 
θ−

<−
1

1 )(*

0

eree
s

i = 0.096. The computing time was 0.06 s on a 

2.128 GHz Intel processor notebook. 
There is good agreement with the results obtained with SPICE. 
Example 2. The circuit proposed in [4] can be difficult to be solved 

numerically. The independent voltage source s is amplitude modulated as 
)2sin()2sin()( 210 ffsts ππ=  where s0= 2 V, the signal frequency is f1= 1 kHz and 

the carrier frequency is f2= 0.1 GHz. The difficulty in solving this circuit is given 
by the fact that the source has very large time variations which requires a very 
small time step for the numerical calculations. Furthermore, the nonlinearity of the 
diode is strong. The other circuit parameters are R = 1 kΩ, Rs = 10 Ω, C = 1 μF. 
The slopes of the half-lines of the u-i diode characteristic are gmin= 10–6 Ω–1 and 
gmax= 0.1 Ω–1. For the equivalent source a resistance of r0= 1/gmax is chosen, which 
gives a contraction factor of θ = 0.999999. The procedure presented in [4] 
combines ESM with brute force. In order to accelerate the computation, the time 
step was initially chosen to be T2/4, than it was reduced to T2/12, where T2= 1/f2. 
The iterative corrections of the equivalent sources stops at a relative error smaller 
than 10–3. The same accuracy was employed for the capacitor voltage periodicity 
when checking the asymptotic solution. The computation time was 1287.22 s on 
the previous mentioned notebook. 

In this paper a time step of T2/6 was used. A relative error of er < 0.995.10–7 
was imposed to stop the iterative corrections of the equivalent sources. The 
solution is within a sphere of the exact solution of radius 0.00995. The number of 
iterations was 114 and the computing time was 7.32 s. 

The variation with time of the capacitor voltage for a period T1= 1/f1 is 
plotted in Fig. 5 and a detailed variation is presented in Fig. 6. 

 
Fig. 5 – The variation with time   Fig. 6 – Detail of the variation with 

of the capacitor voltage.   time of the capacitor voltage 
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Example 3. The advantages of our method when compared to brute force are 
spectacular when the “time constants” of the circuit are large.  

In the case of brute force, state variable periodicity is achieved after many 
periods, leading to large execution times. If the parameters for the elements in the 
previous example are changed to C = 100 μF, f1 = 10 kHz, f2 = 1 GHz then the time 
constant of the linear circuit becomes τ = 1/α = C/Gc= 2.10–3 s and 20T1 periods are 
required for the capacitor voltage to change e times. The relation (23) can be 
understood as a “over-relaxation” of the capacitor voltage. According to (20), when 
choosing an initial value of zero for the capacitor voltage, after a period, the value 

1;1;
)(

++
+=

NeNs ccc uuTu  is obtained, which is then amplified 

20
e1
1

1
1

1
1

≅
−

=
Γ− α−

+
T

N
 times by (23). 

A relative error of 0.94.10–7 was reached in a number of 116 iterations and 
thus the solution was located within a sphere of the exact solution of radius 0.0094. 
The computing time was 7.45 s.  

6. CONCLUSIONS 

The advantage of the presented method when compared with brute force is 
obvious in the case of linear circuits. Without retaining matrices of large 
dimensions, the voltages 

1; +Nscu ( 0
1;
=

+Necu ) are computed through numerical 
integration. The initial value of the state variable can then be computed with (23). 
The periodic steady state solution is then obtained by integrating again in the time 
domain. In the case of complicated circuits relation (23) is replaced by a system of 
equations of dimension equal to the number of state variables.  

The extension of this method to nonlinear circuits can be performed by applying 
ESM, but iterations are required for the correction of the equivalent sources. 

When compared with brute force the procedure described in this paper has 
clear advantages in the case of circuits presenting strong nonlinearities and large 
“time constants”. The method of harmonic balance can be successfully used when 
only a few harmonics are required in describing the periodic steady state solution. 
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