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This paper addresses the problem of online spatial exploration by using reflex agents controlled by neural networks (multilayer 
perceptrons) optimized using a form of genetic algorithms in combination with a pheromone map that acts as information 
storage and exchange medium. We have used a fitness function which also contains information about the structure of the 
problem and progressively changes with the number of generations, ranging from an emphasis on basic behavior related to 
obstacle avoidance and moving towards the exploration frontier in the early generations to an emphasis on the exploration 
performance as the number of generations’ increases. We have shown that the reflex agents optimized using the technique 
proposed in this paper are capable to solve the exploration problem even with a small number of neurons. 
 

1. INTRODUCTION 

In this paper we address the problem of online spatial 
exploration by using reflex agents optimized with genetic 
algorithms. The model-based reflex agents [1] that we propose 
in this paper are controlled by a feed forward neural 
network and they use a pheromone map as a form of 
information storage medium. 

The neural network which controls the agent’s behavior 
is optimized using genetic algorithms which evaluate the 
basic behavior (obstacle avoidance and movement towards 
the exploration frontier) at the beginning of the optimization 
process and then the emphasis is shifted towards higher 
level measures of the exploration performance. 

In the last period, even as the technology becomes more 
and more complex, we keep being amazed by the elegant 
solutions found by the nature for solving notoriously hard 
problems, solutions which still have yet to be matched by 
the modern technology in terms of efficiency, size and 
quality. This fact embolden us to take an approach based on 
natural inspiration techniques for solving the spatial 
exploration problem. 

The technique that we propose uses several concepts and 
techniques of natural inspiration, by using simple reflex 
agents similar to ants, a pheromone map as information 
storage and communication medium and a controller based 
on a neural network optimized using genetic algorithms. 
The innovation consists into using agents controlled by 
feed-forward neural networks (multilayer perceptrons) in 
combination with a pheromone map that acts as information 
storage and exchange medium during the exploration process. 

The problem of online spatial exploration has known a 
renewed interest with the advent of the autonomous robots, 
with applications ranging from consumer products and toys 
to unmanned aerial vehicles and extraterrestrial exploration 
robots. 

First, we present the exploration problem and the 
formalism used through this paper, then we show the model 
of the intelligent agent and the evolutionary algorithm used 
to solve the problem. Finally, we provide a review of the 
performance of this exploration algorithm benchmarked 
against some popular algorithms from the scientific literature. 

2. THE EXPLORATION PROBLEM 

We have modeled the terrain as a discrete 2D grid which 
is basically a graph (V, E) where V is the set of vertices and 
E is the set of edges. The vertices corresponding to the cells 
in the grid are 4-connected to their neighbors, as shown in 
Fig.1 

 
Fig. 1 – An example of the graph model of a 5×5 terrain. The 

vertices corresponding to obstacles are colored in black. 

On the set of vertices, we define the obstacle function, a 
function which tells whether a node corresponds to a cell 
occupied by an obstacle or not as follows: 

 { } ( )0 0
1,: 0,1 , .0,f V f v if v is an obstacle otherwise⎧
⎨
⎩

→ = (1) 

We also define an accessibility function, which takes a 
value of 1 when the vertex v is accessible from the starting 
vertex v0 or 0 otherwise:  ( ) ( ) ( ) ( )( ) ( )( ){     :      ,1

otherwise                         ,0
oao vuufvuVuvf

a vf =∨∧↓∈∃∧¬=  (2) 

where: u ↓ν  means vertex u is adjacent to vertex v. 
The goal of the exploration algorithm is to find a path so 

that the agent visits each vertex at least once with a cost as 
low as possible: 
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where: n
n VvvvvP ∈= − ),,( 1210  is the path; 

{ }iiii vve ,1,1 −− =  is the edge which connects the vertex 

1−iv  to vi; R→Efc : is the cost function which returns the 
cost for moving from one vertex to another along an edge. 

3. THE MODEL OF THE INTELLIGENT AGENT 

The intelligent agent is modeled as a reflex agent with a 
visibility horizon of one cell, considering the terrain 
modeled as a 4-connected grid. The agent has 4 obstacle 
sensors, one for each of the directions in which it can move. 

In addition to the obstacle sensors, each agent also has 4 
pheromone sensors, one for each direction, which are used 
to sense the pheromone levels from the environment.  

The behavior of the intelligent agent is controlled by a 
feed-forward neural network (a multilayer perceptron) with 

80 =S inputs, 42 =S outputs and a single hidden layer with 
81 =S neurons. The number of neurons from the input layer 

is equal to the number of variables taken as inputs by the 
neural network. We use 4 neurons as inputs for the obstacle 
sensors and another 4 neurons as inputs for the pheromone 
map values. In the output layer we use one neuron for each 
possible direction. The output neuron with the highest 
activation level indicates the direction where the agent 
should move at the next step. Finally, for the hidden layer, 
we use a small number of neurons in order to avoid overfitting 
and to make the optimization process computationally 
tractable. A high number of neurons would make the neural 
network prone to learning the structure of the maps used in 
the training set instead of generalizing. 

The neural network takes as input the values provided by 
the obstacle sensors from within the visibility horizon and 
the corresponding normalized values of the pheromone map 
for the neighboring cells.  

Each layer of the neural network is connected to the next 
layer by synapses of variable strength modeled by a weight 
matrix. The weights for the neurons from the hidden layer 
are contained by the matrix Wh and the weights for the 
output neurons are contained by the matrix W0. 

Each of the neurons from the hidden layer and from the 
output layer contains a summation block for computing the 
activation potential and then it applies the activation function 
to the activation potential. 

The neurons from the hidden layer and the neurons from 
the output layer use sigmoid activation functions, more 
specifically, the logistic function. 

This particular choice of architecture for the neural network 
has been motivated by the fact that a multilayer perceptron 
with at least one hidden layer and sigmoidal activation 
functions is a universal approximator [2]. 

Each of the output neurons corresponds to a neighboring 
cell and it indicates that the agent wants to move to that 
cell. If it is not possible to move the desired cell (i.e., due to 
an obstacle), then the agent chooses the action corresponding 
to the next neuron. The neurons are then ordered in 
descending order by the strength of their output. 

When the intelligent agent visits a cell, the pheromone 
map is automatically incremented in order to provide some 
kind of memory. 

4. THE EVOLUTIONARY ALGORITHM 

In this section we present the chromosome that we use 
for encoding the possible solutions for the optimization 
problem, then we present the initialization method and the 
mutation and crossover operators. Then, we present the 
fitness function that we use to evaluate the quality of a 
chromosome (solution candidate), the selection function 
that we use to select the parents that participate in the 
crossover and the replacement function. 

4.1. THE CHROMOSOME 

In order to perform the optimization process using genetic 
algorithms, we use real-valued encoding where each weight 
which defines the neural network is encoded as a floating 
point number. 

Therefore, the chromosome is a vector of real values: 

[ ] S
Szzz R∈= zz ,T

21 , (4)

where: ( ) ( )0 1 1 2= +1 + +1S S S S S⋅ ⋅  is the number of genes;  
S0 is the size of the input layer of the neural network; 
S1 is the size of the hidden layer of the neural network; 
S2 is the size of the output layer of the neural network; 

Szz1  are the genes corresponding to the weights of 
the neural network. 

4.2. THE INITIALIZATION 

The population is initialized by sampling the 
chromosomes from a zero mean uniform distribution: 

 ( ), , ,  1,kz U b b b k S= − ∈ =R . (5) 

4.3 THE CROSSOVER OPERATOR 

We perform the crossover using the discrete crossover 
method for real-valued encoding [3]: 

 z(i) ⊗ z(j) = z(j) ⊙ m + z(j) ⊙ (1s – m), (6)  
where: ⊗ is the crossover operator; ⊙ is the element wise 
multiplication operator; ( ) ( )ji zz ,  are the parents; 

( ) ( )ji zzz ⊗='  is the child obtained from the crossover; 
[ ]T111=s1 is an all one vector of size S; 

[ ]T21 Smmm=m  is a binary vector where each 
element { }1,0∈km is sampled from a discrete uniform 
probability distribution with ( ) 5.00 ==kmp  and 
respectively ( ) 5.01 ==kmp . 

It makes sense to use the discrete crossover, since it 
allows for the selection of the weight combinations which 
perform better than each of the parents.  

Using the discrete crossover with real-valued encoding 
might be seen as a limiting factor, but even so, the number 
of possible children is 2S, growing exponentially large with 
the size of the chromosome. 
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4.4. THE MUTATION OPERATOR 

In order to perform mutations and to allow the weights to 
cover a big range of values, we use the following biased 
mutation operator: 

 Tz = z + r, (7) 

where T is the mutation operator, [ ]T1 2            Sr r r r=  is a 
real valued vector where each component is 0 with 
probability mp−1  and with probability pm with sampled 
from a zero mean normal distribution with a standard deviation 
of σm, pm is a parameter which controls the mutation 
probability. 

The use of a biased Gaussian mutation operator allows 
for the fine tuning of the neural network’s weights around 
the current value, hopefully moving closer to the local 
optimum of the fitness function. 

The parameter pm starts with a value of %10 =mp  and it 
decreases linearly with the number of epochs 

0 1 e
m m

e

np p
N

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
, (8)

where: ne is the number of the current epoch; Ne is the 
maximum number of epochs. 

This decrease of the parameter pm corresponds to a 
decrease of the mutation probability, and this inspiration 
comes from the biology, where simple forms of life (i.e., 
the viruses) have a higher mutation probability per nucleotide 
than the more complicated organisms. As the optimization 
progresses with the number of epochs, the agents expose a 
more complex behavior, similar to the evolution from 
simple forms of life to more complex forms of life. 

4.5. THE FITNESS FUNCTION 

The value returned by the fitness function that we use is a 
progressive measure of the fitness of each individual for the 
exploration task, gradually shifting from rewarding basic 
behavior like obstacle avoidance and gradually moving 
towards rewarding the actual exploration performance 
measured by the number of the unexplored cells. 

We use the following fitness function: 

( ) ( ) ( ) ( ) ( )zzzzz eeaaiie cwcwcwff ⋅−⋅−⋅−= , (9)

where z is the chromosome whose fitness we evaluate, fe(z) 
represents the number of explored cells, ci(z) is a cost for 
the invalid actions that the agent tried to take, ca(z) is a cost 
for the failing to avoid obstacle, ce(z) is a cost for failing to 
move towards unexplored cells when already near them, wi, 
wa, we are the weights allocated to each cost. 

The number of explored cells fe(z) is computed by running a 
simulation of the agent corresponding to the evaluated 
chromosome for n steps 

e

e
N
nNn ⋅= 0 , (10)

where n is the number of steps for which we run the 
simulation, N0 is the number of steps that we estimate to be 
necessary for a reflex agent to explore the map, ne is the 
number of the current epoch, Ne is the maximum number of 
epochs for which we ran the optimization algorithm. 

The cost for invalid actions ci(z) is computed by counting 

the number of times that the neural network controller 
attempted to indicate an action which was invalid (running 
into an obstacle for example): 
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output neuron whose corresponding action is feasible, 
( )( )( )k

jkskj yavfv ,=  is the successor function which returns 

the state of the agent after taking the action ( )( )k
jya  from 

the state vk, ( )( )k
jya  is the action corresponding to the jth 

output neuron. 
The cost for failing to avoid the nearby obstacles ca(z) is 

computed by considering the error of each output neuron 
for the situation when only one neuron should fire 
unambiguously. This situation corresponds to the scenario 
when the agent is surrounded by obstacles and it has just 
one option for moving without running into an obstacle. 

This cost is computed by considering the squared error: 
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x(j) is an input vector corresponding to the scenario 
described above (and considering the pheromone map filled 
with zeros), y is the output of the neural network, tj is the 
desired output, { ji

jiij
=
≠=δ  ,1

 ,0 is the Kronecker delta function, 

4  ,8 20 == SS  since we used a 4-connected grid. 
The cost for failing to move towards the unexplored cells 

ce(z) is computed by considering the error of each output 
neuron for the situation when only one neuron should fire 
unambiguously. This situation corresponds to the scenario 
when the agent has only one unexplored cell adjacent to its 
current location (all other neighboring cells have 
pheromone values greater than zero). 

This cost is computed as follows: 
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described above (and considering that all the neighboring 
cells are accessible), y is the output of the neural network, tj 
is the desired output 

4.6. THE SELECTION FUNCTION 

In order to select the parents, we have used the rank 
order selection: 

( )( )
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where p(z(i)) is the probability of choosing the individual z 
as a parent, ( )( ) ( ) ( )( ){ }ii zzzz rankrankrank 〈=  is the 

rank of the chromosome z(i) [computed considering the 
value of the fitness function], [ ]2,1∈SP  is the selective 
pressure. 

At each epoch, Nz pairs of parents are selected which are 
used to produce the children. 

4.7. THE REPLACEMENT FUNCTION 

We use a genetic algorithm implementation based on 
steady states and therefore the best of the generated 
children replace the least fit individuals of the current 
population at each epoch (only if they are better than the 
individuals that they replace). At each epoch we generate 
Nc = Nz children. 

5. THE RESULTS 

In order to evaluate and compare the solutions obtained 
using genetic algorithms with other exploration algorithms 
from the literature, we use as a benchmark the number of 
steps required for exploring 80 – 90 % of the accessible 
cells from the test maps. 

The neural network used to control the behavior of the 
intelligent agents has been trained using 10 randomly 
generated maps of the same size as the “Tiny World” map 
presented in Fig. 2. Good results have been obtained with 
the following parameters:  

.10 , 10 , 4, 8 , 8 , 300
 , 24 , 5.1 , 10  , 10 , 2.0
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Fig. 2 – The “Tiny World” map. 

The obtained solutions have been also tested on a new set 

of 100 randomly generated maps of the same size as the 
maps used for training, in order to check if the neural 
network is able to generalize. 

We have compared the exploration speed obtained by the 
solutions produced by the current algorithm with several 
standard algorithms from the literature, including the node 
counting algorithm [4], the exploration algorithm based on 
intelligent agents controlled using Thrun’s rule [5], vertex ant 
walk which is a smell-oriented exploration algorithm [6] and 
learning real-time A* with a one cell look-ahead [7, 8].  

For the comparison, we used 8 agents, each controlled by 
a neural network with one hidden layer with 8 neurons, 
trained using genetic algorithms for 300 epochs with a 
population size of 24 individuals. From those 8 solutions, 
we have selected the best performing agent (by testing them 
on the training maps, which were used for optimization). 

The exploration speed results computed by running the 
best performing agent on the test map set and aiming for 
80 % coverage of the accessible cells can be seen in Table 1. 

Table 1 

Number of steps necessary for 80 % exploration of the map 
(1 run using the training set of 10 maps) 

Algorithm Step count (median) 
Current algorithm 364.50 
Node counting algorithm 421.50 
Thrun’s rule 427.25 
Vertex ant walk 409.75 
Learning real-time A* 432.00 

As expected, the agent has a good performance on the 
training and outperforms in terms of speed the other 
exploration algorithms based on reflex agents. Using a 
small number of hidden neurons, we have decreased the 
predisposition of the neural network to over fitting. 

The exploration speed results for one run on the training 
map set for an 80 % coverage of the accessible cells can be 
seen in Table 2. 

Table 2 

Number of steps necessary for 80 % exploration of the map 
(1 run using the training set of 100 maps) 

Algorithm Step count (median) 
Current algorithm 376.50 
Node counting algorithm 379.50 
Thrun’s rule 364.00 
Vertex ant walk 332.50 
Learning real-time A* 351.00 

We have also tested the same agent aiming for 90 % map 
exploration. Since the agent was not capable to explore all 
the maps up to 90 %, we included only the median in the 
comparison. The results are presented in Tables 3 and 4. 

Table 3 

Number of steps necessary for 90 % exploration of the map (1 run 
using the training set of 10 maps) 

Algorithm Step count (median) 
Current algorithm 418.00 
Node counting algorithm 532.13 
Thrun’s rule 543.00 
Vertex ant walk 524.13 
Learning real-time A* 521.63 
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Table 4 

Number of steps necessary for 90 % exploration of the map 
(1 run using the training set of 100 maps) 

Algorithm Step count (median) 
Current algorithm 574.50 
Node counting algorithm 437.50 
Thrun’s rule 447.50 
Vertex ant walk 439.50 
Learning real-time A* 440.00 

From Tables 3 and 4, it can be observed that on the test 
map set, the performance of the agents obtained using genetic 
algorithms is slightly lower that on the training set. This is 
expected, since the optimization has been performed on the 
training map set and therefore the agents are optimized to 
explore that specific maps, and since the training map set is 
quite small (due to computational reasons), a small degree 
of over fitting is inevitable. 

As it can be seen from the Table 5, for the successfully 
explored maps, all agents had similar performance. 

We have also analyzed separately the performance of the 
solution that we obtained on the maps that it was able to 
explore up to 90 % and we have summarized these results 
in Table 5. 

Table 5 

Number of steps necessary for 90 % exploration of the map 
(1 run using only the maps explored successfully up to 90% 

from the training set of 100 maps) 

Algorithm Step count (median) 
Current algorithm 467.00 
Node counting algorithm 462.00 
Thrun’s rule 462.00 
Vertex ant walk 481.00 
Learning real-time A* 466.00 

As it can be observed from the Tables 4 and 5, when we 
do consider only the maps for which the agent obtained 
using the current algorithm succeeds to reach 90 % 
exploration (in the scenarios where the exploration didn’t 
reach 90 % the step count was considered to be infinite), it 
can be seen that the performance of our algorithm is 
comparable with the performance of the other algorithms 
from the literature. 

As it can be observed the Tables 1, 2, 3 and 4 the 
intelligent agent obtained using the technique described by 
us is capable to generalize and it can complete the map 
exploration up to a given percent in most of the cases.  

The agent that we analyzed was controlled by neural 
networks whose weights are represented graphically in Fig. 3 
and Fig. 4. For convenient interpretation, the weight matrices 
have been represented as grayscale images, where white 
corresponds to excitatory weights and black corresponds to 
inhibitory weights. The weights of each neuron are arranged 
on the row corresponding to that neuron. 

In order to get a glimpse on what neural network has 
evolved, we have analyzed the weight matrices corresponding 
to the hidden neurons and to the output neurons. 

 
Fig. 3 – The weights of the hidden neurons. 

 

Fig. 4 – The weights of the output neurons. 

As it can be seen from Figs. 3 and 4, both the weight 
matrix of the hidden neurons and the weight matrix of the 
output neurons are dense matrices, suggesting the fact that 
the agent is following a complex rule in order to solve the 
exploration task. 

As we have shown through the analysis from the above, 
the hidden neurons represent complex high level features 
which characterize the situation encountered by the intelligent 
agent, and one hidden neuron contributes to the action 
potential of multiple output neurons. 

6. CONCLUSIONS 

In this paper we have shown that it is possible to obtain 
good exploration agents by optimizing them using 
evolutionary algorithms. We have shown that even with a 
very low number of neurons (only 8 neurons in the hidden 
layer), the neural network is capable to generalize and to 
solve the problem on maps unknown to the agent. 

Although the results that we have obtained do not 
outperform the human designed exploration agents on the 
unknown map, they are still an important step forward 
because we have shown that is possible to obtain reasonable 
performance by using automatic design methods instead of 
human based design. 

In this paper we have shown that by optimizing a neural 
network with genetic algorithms it is possible to obtain 
complex behavior, which is non-trivial to design by hand.  

Our results show that using evolutionary strategies it is 
possible to solve complex problems, like the exploration 
problem and to obtain global results by using only local 
information. 
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Our research has shown once again that evolutionary 
algorithms can solve difficult problems which are very 
different one from each other. We used evolutionary com-
putation to solve the exploration problems, while others 
used similar algorithms to successfully solve very different 
problems, like the power consumption optimization problem 
[9] or the eddy current heating process optimization 
problem [10].  

For solving the exploration problem, we used the multilayer 
perceptron neural network, but most of the neural networks 
that are universal approximators should be able to solve this 
problem given the correct weights for the neurons. 

We have also shown in this paper that using the 
technique proposed by us it is possible to obtain solutions 
which expose highly complex behaviors, sometimes arriving at 
solutions similar to what a human designer would implement 
(like the obstacle edge following agent). 
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