
 Rev. Roum. Sci. Techn.– Électrotechn. et Énerg.
 Vol. 62, 2, pp. 209–214, Bucarest, 2017

1 University “Politehnica” of Bucharest, Department of Applied Electronics and Information Engineering, 030018, Romania,
bogdan.florea@ai.pub.ro, ovidiu.grigore@ai.pub.ro, mihai.datcu@dlr.de

2 Remote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffen, Weßling, 82234, Germany

LEARNING ONLINE SPATIAL EXPLORATION
BY OPTIMIZING ARTIFICIAL NEURAL NETWORKS

ASSISTED BY A PHEROMONE MAP
BOGDAN-FLORIN FLOREA1, OVIDIU GRIGORE1, MIHAI DATCU1,2

Key words: Autonomous agents, Cooperative systems, Genetic algorithms, Intelligent robots, Mobile agents.

This paper addresses the problem of online spatial exploration by using reflex agents controlled by neural networks (multilayer
perceptrons) optimized using a form of genetic algorithms in combination with a pheromone map that acts as information
storage and exchange medium. We have used a fitness function which also contains information about the structure of the
problem and progressively changes with the number of generations, ranging from an emphasis on basic behavior related to
obstacle avoidance and moving towards the exploration frontier in the early generations to an emphasis on the exploration
performance as the number of generations’ increases. We have shown that the reflex agents optimized using the technique
proposed in this paper are capable to solve the exploration problem even with a small number of neurons.

1. INTRODUCTION

In this paper we address the problem of online spatial
exploration by using reflex agents optimized with genetic
algorithms. The model-based reflex agents [1] that we propose
in this paper are controlled by a feed forward neural
network and they use a pheromone map as a form of
information storage medium.

The neural network which controls the agent’s behavior
is optimized using genetic algorithms which evaluate the
basic behavior (obstacle avoidance and movement towards
the exploration frontier) at the beginning of the optimization
process and then the emphasis is shifted towards higher
level measures of the exploration performance.

In the last period, even as the technology becomes more
and more complex, we keep being amazed by the elegant
solutions found by the nature for solving notoriously hard
problems, solutions which still have yet to be matched by
the modern technology in terms of efficiency, size and
quality. This fact embolden us to take an approach based on
natural inspiration techniques for solving the spatial
exploration problem.

The technique that we propose uses several concepts and
techniques of natural inspiration, by using simple reflex
agents similar to ants, a pheromone map as information
storage and communication medium and a controller based
on a neural network optimized using genetic algorithms.
The innovation consists into using agents controlled by
feed-forward neural networks (multilayer perceptrons) in
combination with a pheromone map that acts as information
storage and exchange medium during the exploration process.

The problem of online spatial exploration has known a
renewed interest with the advent of the autonomous robots,
with applications ranging from consumer products and toys
to unmanned aerial vehicles and extraterrestrial exploration
robots.

First, we present the exploration problem and the
formalism used through this paper, then we show the model
of the intelligent agent and the evolutionary algorithm used
to solve the problem. Finally, we provide a review of the
performance of this exploration algorithm benchmarked
against some popular algorithms from the scientific literature.

2. THE EXPLORATION PROBLEM

We have modeled the terrain as a discrete 2D grid which
is basically a graph (V, E) where V is the set of vertices and
E is the set of edges. The vertices corresponding to the cells
in the grid are 4-connected to their neighbors, as shown in
Fig.1

Fig. 1 – An example of the graph model of a 5×5 terrain. The

vertices corresponding to obstacles are colored in black.

On the set of vertices, we define the obstacle function, a
function which tells whether a node corresponds to a cell
occupied by an obstacle or not as follows:

 { } ()0 0
1,: 0,1 , .0,f V f v if v is an obstacle otherwise⎧
⎨
⎩

→ = (1)

We also define an accessibility function, which takes a
value of 1 when the vertex v is accessible from the starting
vertex v0 or 0 otherwise: () () () ()() ()(){ : ,1

otherwise ,0
oao vuufvuVuvf

a vf =∨∧↓∈∃∧¬= (2)

where: u ↓ν means vertex u is adjacent to vertex v.
The goal of the exploration algorithm is to find a path so

that the agent visits each vertex at least once with a cost as
low as possible:

2 Bogdan-Florin Florea, Ovidiu Grigore, Mihai Datcu 210

()

()

()∑
−

=
−

−==
−=↓ −
−

=
1

1
,1

1,1,1
1,1,

...,,
1

1210

argmin
n

i
iic

nivf
nivv

vvvv
efP

ia
ii

n
, (3)

where: n
n VvvvvP ∈= −),,(1210 is the path;

{ }iiii vve ,1,1 −− = is the edge which connects the vertex

1−iv to vi; R→Efc : is the cost function which returns the
cost for moving from one vertex to another along an edge.

3. THE MODEL OF THE INTELLIGENT AGENT

The intelligent agent is modeled as a reflex agent with a
visibility horizon of one cell, considering the terrain
modeled as a 4-connected grid. The agent has 4 obstacle
sensors, one for each of the directions in which it can move.

In addition to the obstacle sensors, each agent also has 4
pheromone sensors, one for each direction, which are used
to sense the pheromone levels from the environment.

The behavior of the intelligent agent is controlled by a
feed-forward neural network (a multilayer perceptron) with

80 =S inputs, 42 =S outputs and a single hidden layer with
81 =S neurons. The number of neurons from the input layer

is equal to the number of variables taken as inputs by the
neural network. We use 4 neurons as inputs for the obstacle
sensors and another 4 neurons as inputs for the pheromone
map values. In the output layer we use one neuron for each
possible direction. The output neuron with the highest
activation level indicates the direction where the agent
should move at the next step. Finally, for the hidden layer,
we use a small number of neurons in order to avoid overfitting
and to make the optimization process computationally
tractable. A high number of neurons would make the neural
network prone to learning the structure of the maps used in
the training set instead of generalizing.

The neural network takes as input the values provided by
the obstacle sensors from within the visibility horizon and
the corresponding normalized values of the pheromone map
for the neighboring cells.

Each layer of the neural network is connected to the next
layer by synapses of variable strength modeled by a weight
matrix. The weights for the neurons from the hidden layer
are contained by the matrix Wh and the weights for the
output neurons are contained by the matrix W0.

Each of the neurons from the hidden layer and from the
output layer contains a summation block for computing the
activation potential and then it applies the activation function
to the activation potential.

The neurons from the hidden layer and the neurons from
the output layer use sigmoid activation functions, more
specifically, the logistic function.

This particular choice of architecture for the neural network
has been motivated by the fact that a multilayer perceptron
with at least one hidden layer and sigmoidal activation
functions is a universal approximator [2].

Each of the output neurons corresponds to a neighboring
cell and it indicates that the agent wants to move to that
cell. If it is not possible to move the desired cell (i.e., due to
an obstacle), then the agent chooses the action corresponding
to the next neuron. The neurons are then ordered in
descending order by the strength of their output.

When the intelligent agent visits a cell, the pheromone
map is automatically incremented in order to provide some
kind of memory.

4. THE EVOLUTIONARY ALGORITHM

In this section we present the chromosome that we use
for encoding the possible solutions for the optimization
problem, then we present the initialization method and the
mutation and crossover operators. Then, we present the
fitness function that we use to evaluate the quality of a
chromosome (solution candidate), the selection function
that we use to select the parents that participate in the
crossover and the replacement function.

4.1. THE CHROMOSOME

In order to perform the optimization process using genetic
algorithms, we use real-valued encoding where each weight
which defines the neural network is encoded as a floating
point number.

Therefore, the chromosome is a vector of real values:

[] S
Szzz R∈= zz ,T

21 , (4)

where: () ()0 1 1 2= +1 + +1S S S S S⋅ ⋅ is the number of genes;
S0 is the size of the input layer of the neural network;
S1 is the size of the hidden layer of the neural network;
S2 is the size of the output layer of the neural network;

Szz1 are the genes corresponding to the weights of
the neural network.

4.2. THE INITIALIZATION

The population is initialized by sampling the
chromosomes from a zero mean uniform distribution:

 (), , , 1,kz U b b b k S= − ∈ =R . (5)

4.3 THE CROSSOVER OPERATOR

We perform the crossover using the discrete crossover
method for real-valued encoding [3]:

 z(i) ⊗ z(j) = z(j) ⊙ m + z(j) ⊙ (1s – m), (6)
where: ⊗ is the crossover operator; ⊙ is the element wise
multiplication operator; () ()ji zz , are the parents;

() ()ji zzz ⊗=' is the child obtained from the crossover;
[]T111=s1 is an all one vector of size S;

[]T21 Smmm=m is a binary vector where each
element { }1,0∈km is sampled from a discrete uniform
probability distribution with () 5.00 ==kmp and
respectively () 5.01 ==kmp .

It makes sense to use the discrete crossover, since it
allows for the selection of the weight combinations which
perform better than each of the parents.

Using the discrete crossover with real-valued encoding
might be seen as a limiting factor, but even so, the number
of possible children is 2S, growing exponentially large with
the size of the chromosome.

3 Exploration using neural networks assisted by pheromone maps

211

4.4. THE MUTATION OPERATOR

In order to perform mutations and to allow the weights to
cover a big range of values, we use the following biased
mutation operator:

 Tz = z + r, (7)

where T is the mutation operator, []T1 2 Sr r r r= is a
real valued vector where each component is 0 with
probability mp−1 and with probability pm with sampled
from a zero mean normal distribution with a standard deviation
of σm, pm is a parameter which controls the mutation
probability.

The use of a biased Gaussian mutation operator allows
for the fine tuning of the neural network’s weights around
the current value, hopefully moving closer to the local
optimum of the fitness function.

The parameter pm starts with a value of %10 =mp and it
decreases linearly with the number of epochs

0 1 e
m m

e

np p
N

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
, (8)

where: ne is the number of the current epoch; Ne is the
maximum number of epochs.

This decrease of the parameter pm corresponds to a
decrease of the mutation probability, and this inspiration
comes from the biology, where simple forms of life (i.e.,
the viruses) have a higher mutation probability per nucleotide
than the more complicated organisms. As the optimization
progresses with the number of epochs, the agents expose a
more complex behavior, similar to the evolution from
simple forms of life to more complex forms of life.

4.5. THE FITNESS FUNCTION

The value returned by the fitness function that we use is a
progressive measure of the fitness of each individual for the
exploration task, gradually shifting from rewarding basic
behavior like obstacle avoidance and gradually moving
towards rewarding the actual exploration performance
measured by the number of the unexplored cells.

We use the following fitness function:

() () () () ()zzzzz eeaaiie cwcwcwff ⋅−⋅−⋅−= , (9)

where z is the chromosome whose fitness we evaluate, fe(z)
represents the number of explored cells, ci(z) is a cost for
the invalid actions that the agent tried to take, ca(z) is a cost
for the failing to avoid obstacle, ce(z) is a cost for failing to
move towards unexplored cells when already near them, wi,
wa, we are the weights allocated to each cost.

The number of explored cells fe(z) is computed by running a
simulation of the agent corresponding to the evaluated
chromosome for n steps

e

e
N
nNn ⋅= 0 , (10)

where n is the number of steps for which we run the
simulation, N0 is the number of steps that we estimate to be
necessary for a reflex agent to explore the map, ne is the
number of the current epoch, Ne is the maximum number of
epochs for which we ran the optimization algorithm.

The cost for invalid actions ci(z) is computed by counting

the number of times that the neural network controller
attempted to indicate an action which was invalid (running
into an obstacle for example):

() () () (){ }∑
=

>=
n

k

k
f

k
i

k
ii yyyc

1
 z , (11)

where ()
()

(){ }k
j

k
f yy

0vf s.t. kjo
max

=
= is the most confident

output neuron whose corresponding action is feasible,
()()()k

jkskj yavfv ,= is the successor function which returns

the state of the agent after taking the action ()()k
jya from

the state vk, ()()k
jya is the action corresponding to the jth

output neuron.
The cost for failing to avoid the nearby obstacles ca(z) is

computed by considering the error of each output neuron
for the situation when only one neuron should fire
unambiguously. This situation corresponds to the scenario
when the agent is surrounded by obstacles and it has just
one option for moving without running into an obstacle.

This cost is computed by considering the squared error:

() ()()
2

21

2

∑
=

−=
S

j
j

j
ac txyz , (12)

where

() , ,

0

0
1

1

22

2
11

1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

δ

δ
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

δ−

δ−

=

jS

j

j

S

jS

j

j

y

y
tyx ,

x(j) is an input vector corresponding to the scenario
described above (and considering the pheromone map filled
with zeros), y is the output of the neural network, tj is the
desired output, { ji

jiij
=
≠=δ ,1

 ,0 is the Kronecker delta function,

4 ,8 20 == SS since we used a 4-connected grid.
The cost for failing to move towards the unexplored cells

ce(z) is computed by considering the error of each output
neuron for the situation when only one neuron should fire
unambiguously. This situation corresponds to the scenario
when the agent has only one unexplored cell adjacent to its
current location (all other neighboring cells have
pheromone values greater than zero).

This cost is computed as follows:

() ()()
2

21

2

∑
=

−=
S

j
j

j
ec dxyz , (13)

where

()

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

δ

δ
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

δ−

δ−
=

22

2

11

1
,,

1

1
0

0

jS

j

j

S

jS

j

j

y

y
tyx .

x
(j) is an input vector corresponding to the scenario

4 Bogdan-Florin Florea, Ovidiu Grigore, Mihai Datcu 212

described above (and considering that all the neighboring
cells are accessible), y is the output of the neural network, tj
is the desired output

4.6. THE SELECTION FUNCTION

In order to select the parents, we have used the rank
order selection:

()()
()

()()

()
()()∑ = ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅−⋅+−

⋅−⋅+−
=

zN

k
z

k
z

i

i

N
SPSP

N
SPSP

p

1

rank122

rank122

z

z

z , (14)

where p(z(i)) is the probability of choosing the individual z
as a parent, ()() () ()(){ }ii zzzz rankrankrank 〈= is the

rank of the chromosome z(i) [computed considering the
value of the fitness function], []2,1∈SP is the selective
pressure.

At each epoch, Nz pairs of parents are selected which are
used to produce the children.

4.7. THE REPLACEMENT FUNCTION

We use a genetic algorithm implementation based on
steady states and therefore the best of the generated
children replace the least fit individuals of the current
population at each epoch (only if they are better than the
individuals that they replace). At each epoch we generate
Nc = Nz children.

5. THE RESULTS

In order to evaluate and compare the solutions obtained
using genetic algorithms with other exploration algorithms
from the literature, we use as a benchmark the number of
steps required for exploring 80 – 90 % of the accessible
cells from the test maps.

The neural network used to control the behavior of the
intelligent agents has been trained using 10 randomly
generated maps of the same size as the “Tiny World” map
presented in Fig. 2. Good results have been obtained with
the following parameters:

.10 , 10 , 4, 8 , 8 , 300
 , 24 , 5.1 , 10 , 10 , 2.0

210 =σ=====
=====

me

zeai
bSSSN

NSPwww

Fig. 2 – The “Tiny World” map.

The obtained solutions have been also tested on a new set

of 100 randomly generated maps of the same size as the
maps used for training, in order to check if the neural
network is able to generalize.

We have compared the exploration speed obtained by the
solutions produced by the current algorithm with several
standard algorithms from the literature, including the node
counting algorithm [4], the exploration algorithm based on
intelligent agents controlled using Thrun’s rule [5], vertex ant
walk which is a smell-oriented exploration algorithm [6] and
learning real-time A* with a one cell look-ahead [7, 8].

For the comparison, we used 8 agents, each controlled by
a neural network with one hidden layer with 8 neurons,
trained using genetic algorithms for 300 epochs with a
population size of 24 individuals. From those 8 solutions,
we have selected the best performing agent (by testing them
on the training maps, which were used for optimization).

The exploration speed results computed by running the
best performing agent on the test map set and aiming for
80 % coverage of the accessible cells can be seen in Table 1.

Table 1

Number of steps necessary for 80 % exploration of the map
(1 run using the training set of 10 maps)

Algorithm Step count (median)
Current algorithm 364.50
Node counting algorithm 421.50
Thrun’s rule 427.25
Vertex ant walk 409.75
Learning real-time A* 432.00

As expected, the agent has a good performance on the
training and outperforms in terms of speed the other
exploration algorithms based on reflex agents. Using a
small number of hidden neurons, we have decreased the
predisposition of the neural network to over fitting.

The exploration speed results for one run on the training
map set for an 80 % coverage of the accessible cells can be
seen in Table 2.

Table 2

Number of steps necessary for 80 % exploration of the map
(1 run using the training set of 100 maps)

Algorithm Step count (median)
Current algorithm 376.50
Node counting algorithm 379.50
Thrun’s rule 364.00
Vertex ant walk 332.50
Learning real-time A* 351.00

We have also tested the same agent aiming for 90 % map
exploration. Since the agent was not capable to explore all
the maps up to 90 %, we included only the median in the
comparison. The results are presented in Tables 3 and 4.

Table 3

Number of steps necessary for 90 % exploration of the map (1 run
using the training set of 10 maps)

Algorithm Step count (median)
Current algorithm 418.00
Node counting algorithm 532.13
Thrun’s rule 543.00
Vertex ant walk 524.13
Learning real-time A* 521.63

5 Exploration using neural networks assisted by pheromone maps

213

Table 4

Number of steps necessary for 90 % exploration of the map
(1 run using the training set of 100 maps)

Algorithm Step count (median)
Current algorithm 574.50
Node counting algorithm 437.50
Thrun’s rule 447.50
Vertex ant walk 439.50
Learning real-time A* 440.00

From Tables 3 and 4, it can be observed that on the test
map set, the performance of the agents obtained using genetic
algorithms is slightly lower that on the training set. This is
expected, since the optimization has been performed on the
training map set and therefore the agents are optimized to
explore that specific maps, and since the training map set is
quite small (due to computational reasons), a small degree
of over fitting is inevitable.

As it can be seen from the Table 5, for the successfully
explored maps, all agents had similar performance.

We have also analyzed separately the performance of the
solution that we obtained on the maps that it was able to
explore up to 90 % and we have summarized these results
in Table 5.

Table 5

Number of steps necessary for 90 % exploration of the map
(1 run using only the maps explored successfully up to 90%

from the training set of 100 maps)

Algorithm Step count (median)
Current algorithm 467.00
Node counting algorithm 462.00
Thrun’s rule 462.00
Vertex ant walk 481.00
Learning real-time A* 466.00

As it can be observed from the Tables 4 and 5, when we
do consider only the maps for which the agent obtained
using the current algorithm succeeds to reach 90 %
exploration (in the scenarios where the exploration didn’t
reach 90 % the step count was considered to be infinite), it
can be seen that the performance of our algorithm is
comparable with the performance of the other algorithms
from the literature.

As it can be observed the Tables 1, 2, 3 and 4 the
intelligent agent obtained using the technique described by
us is capable to generalize and it can complete the map
exploration up to a given percent in most of the cases.

The agent that we analyzed was controlled by neural
networks whose weights are represented graphically in Fig. 3
and Fig. 4. For convenient interpretation, the weight matrices
have been represented as grayscale images, where white
corresponds to excitatory weights and black corresponds to
inhibitory weights. The weights of each neuron are arranged
on the row corresponding to that neuron.

In order to get a glimpse on what neural network has
evolved, we have analyzed the weight matrices corresponding
to the hidden neurons and to the output neurons.

Fig. 3 – The weights of the hidden neurons.

Fig. 4 – The weights of the output neurons.

As it can be seen from Figs. 3 and 4, both the weight
matrix of the hidden neurons and the weight matrix of the
output neurons are dense matrices, suggesting the fact that
the agent is following a complex rule in order to solve the
exploration task.

As we have shown through the analysis from the above,
the hidden neurons represent complex high level features
which characterize the situation encountered by the intelligent
agent, and one hidden neuron contributes to the action
potential of multiple output neurons.

6. CONCLUSIONS

In this paper we have shown that it is possible to obtain
good exploration agents by optimizing them using
evolutionary algorithms. We have shown that even with a
very low number of neurons (only 8 neurons in the hidden
layer), the neural network is capable to generalize and to
solve the problem on maps unknown to the agent.

Although the results that we have obtained do not
outperform the human designed exploration agents on the
unknown map, they are still an important step forward
because we have shown that is possible to obtain reasonable
performance by using automatic design methods instead of
human based design.

In this paper we have shown that by optimizing a neural
network with genetic algorithms it is possible to obtain
complex behavior, which is non-trivial to design by hand.

Our results show that using evolutionary strategies it is
possible to solve complex problems, like the exploration
problem and to obtain global results by using only local
information.

6 Bogdan-Florin Florea, Ovidiu Grigore, Mihai Datcu 214

Our research has shown once again that evolutionary
algorithms can solve difficult problems which are very
different one from each other. We used evolutionary com-
putation to solve the exploration problems, while others
used similar algorithms to successfully solve very different
problems, like the power consumption optimization problem
[9] or the eddy current heating process optimization
problem [10].

For solving the exploration problem, we used the multilayer
perceptron neural network, but most of the neural networks
that are universal approximators should be able to solve this
problem given the correct weights for the neurons.

We have also shown in this paper that using the
technique proposed by us it is possible to obtain solutions
which expose highly complex behaviors, sometimes arriving at
solutions similar to what a human designer would implement
(like the obstacle edge following agent).

ACKNOWLEDGEMENTS

The work has been funded by the Sectoral Operational
Programme Human Resources Development 2007–2013 of
the Ministry of European Funds through the Financial
Agreement POSDRU/159/1.5/S/132397.

Received on March 19, 2016

REFERENCES

1. Teodor Leuca, Mihaela Novac, Optimization of Eddy Current
Heating Process using Genetic Algorithms, Part 2, Rev. Roum.
Sci. Techn. – Électrotechn. et Énerg., 54, 4, pp. 231, 2012.

2. G. Cybenko, Approximations by superpositions of sigmoidal
functions, Mathematics of Control, Signals, and Systems, 2,
4, pp. 303–314 (1989).

3. H. Mühlenbein, D. Schlierkamp-Voosen, Evolutionary
computation, pp. 25–49 (1993).

4. A. Pirzadeh, W. Snyder, A unified solution to coverage and search
in explored and unexplored terrains using indirect control,
Proceedings of the International Conference on Robotics
and Automation, pp. 2113–2119 (1990).

5. S. Thrun, Efficient exploration in reinforcement learning,
Technical Report CMU-CS-92-102, School of Computer
Science, Carnegie Mellon University, Pittsburgh
(Pennsylvania), 1992.

6. I. Wagner, M. Lindenbaum, A. Bruckstein, On-Line Graph
Searching by a Smell-Oriented Vertex Process, AAAI
Technical Report WS-97-10, 1997.

7. S. Koenig, Y. Liu, Terrain Coverage with Ant Robots: A Simulation
Study, AGENTS’01, Montreal, 2011.

8. R. Korf, Real-Time Heuristic Search, Artificial Intelligence, 42,
pp. 189–211 (1990).

9. Gheorghe Șerban, Laurențiu Ionescu, Alin Mazăre, The
possibility of optimisation for power supply consumption
using evolvable power regulator, Part 2, Rev. Roum. Sci.
Techn. – Électrotechn. et Énerg., 57, 2, pp. 222–231, 2012.

10. S. Russel, P. Norvig, Artificial Intelligence: A Modern
Approach (Ch. 2), 2nd Ed., Upper Saddle River, New
Jersey, Prentice Hall, 2003.

