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This paper proposes an approach for obstacle avoidance to ensure safe navigation in a mazy environment. The presented bubble 
bug algorithm (BBA) is an enhancement of already proposed intelligent bug algorithm (IBA), which over performs bug variants. 
The improved performance of BBA is achieved by fusing IBA with bubble band technique (BBT) and bubble rebound algorithm 
(BRA). The novelty of the proposed strategy BBA lies in its salient features compared with the existing algorithms, achieved by 
addressing limitations of IBA and BRA. The proposed solution is goal-oriented and offers collision avoidance from neighboring 
obstacles by defining bubble around the robot. Simulation results illustrating navigation in various scenarios and comparative 
plots of path cost witness effectiveness of the proposed approach. 
 

1. INTRODUCTION 

History of robots dates back to 17th century with the 
development of a mechanical doll of a human size. The 
revolution in the field of mechatronics has made it possible 
to see the ‘fiction’ robots in reality in various fields of life 
[1, 2]. Today, robots are being actively used for rehabilitation, 
motion assistance [3] and in many other application areas 
including space and industries [4, 5]. Broadly speaking, 
robots can be categorized into two fundamental groups: 
manipulator type arms [6] and wheel based mobile robots. 

The increasing applications of mobile robots have 
brought up several challenges regarding their path planning, 
safe navigation, control strategy and obstacle avoidance etc. 
One of the key issues concerning mobile robot locomotion 
is to simultaneously address the path planning problem and 
to devise the control strategy for obstacle avoidance [7]. 
Conventional monitoring methods are limited due to the 
uncertainty of environment. Real world scenarios necessitate 
considering dynamic and unknown environments thus 
highlighting significance of control strategy for obstacle 
avoidance autonomous navigation.  

With a focus on these features, the present paper extends 
already proposed research [8] and combines path planning 
and control for autonomous robot navigation by proposing a 
goal-oriented algorithm. The path planning provides global 
solution whereas obstacle avoidance feature deals with 
upcoming obstacles especially faced by the robot during the 
edge following process. This is achieved by introducing a 
dynamic bubble around the robot that offers traversal along 
a safe trajectory.  

2. LITERATURE REVIEW 

Literature reports variety of the algorithms to navigate 
mobile robots autonomously. Bug algorithms are fundamental 
and complete [9] with provable guarantee, since they let the 
robot to reach the destination if it lies in the given space. 
Each algorithm in bug family carries its own termination 
property. A comparison of bug navigation algorithms is 
reported in [10]. These algorithms may take the robot far 
away from the goal in some scenarios [7, 11]. Simultaneous 
localization and mapping (SLAM) based solutions can 

generate map of the environment [12]. However, most of 
the reported studies of SLAM are limited to indoor locations. 
For an outdoor environment, an algorithm based on GPS 
and smart phone can be used for autonomous navigation. 
For underwater environments, a terrain map building method 
has been proposed by E.H. Lee and S. Lee in [12]. 
Highlighting terrain matching problems, a path planning 
approach has been presented by Li. et al. in [13]. The 
reported algorithms which are most relevant to the current 
research are presented below: 

2.1. DIST-BUG ALGORITHM: 
THE MOST EFFICIENT IN BUG FAMILY 

The earliest algorithms from bug family bug1 and bug2 
offer minimum memory requirements, easy tuning and do 
not suffer from local minima [11]. However, they do not 
have capability to make optimal use of sensor’s data to 
generate shorter paths. An improved approach, dist-bug, 
which is considered as the most advanced variant of bug 
family, addresses this problem [8]. It allows the robot to 
converge in comparatively less time by considering the 
shorter distance from the robot’s position to destination. 
The trajectory of dist-bug algorithm is illustrated in Fig. 1. 

 
Fig. 1 – Trajectory of dist-bug algorithm. 

2.2. INTELLIGENT BUG ALGORITHM (IBA): AN 
IMPROVED VERSION OF DIST-BUG ALGORITHM 

Although dist-bug algorithm considers the path cost 
throughout the decision making process, however it is not 
goal oriented strategy. Thus, it can restrict a robot to follow 
edges of an obstacle even in the presence of an obstacle free 
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path towards goal. This gives a clue to improve dist-bug 
algorithm by devising an approach to make it goal oriented 
and to consider time to destination. Based on this, IBA 
proposed in [8], offers an intelligent control to navigate the 
robot in maze environments. By taking goal position into 
account, leaving point in IBA is selected on the basis of free 
path toward the destination. Leaving point is the position 
from where the robot stops following edges of an obstacle 
and starts moving towards goal. The improved characteristics 
of IBA make it efficient to prove its convergence with 
relatively shorter and smoother trajectory in comparatively 
less time as proved in [8]. The trajectory followed by a 
robot using IBA is illustrated in Fig. 2.  

 
Fig. 2 – Trajectory of IBA. 

2.3. RANDOM PARTICLES OPTIMIZATION (RPO) 
ALGORITHM: IMPROVEMENT IN ARTIFICIAL 

POTENTIAL FIELD (APF) METHOD 

RPO algorithm [14], proposed by Mohajer et al., improves 
APF approach by steering a robot without suffering from 
local minima problem. In RPO algorithm, particles are 
distributed randomly on a circle of radius C(t) around a 
robot. These particles are used to search optimal path toward 
the destination to navigate a mobile robot in an unknown 
environment. The robot is finally steered in the direction 
corresponding to the searched optimal path. This procedure 
is iterated until the robot reaches its destination. The 
corresponding trajectory followed by a robot from source to 
destination is shown in Fig. 3. 

 
Fig. 3 – Behaviour of the robot executing RPO. 

If θs(t) is the position of each particle s in time t, then the 
next position at time (t+dt) can be calculated by eq. (1). 
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where ∆(t) is a vector of unit length used to define the 

direction of a particle w.r.t time. The selection of the best 
particle is based on two different strategies: Gaussian cost 
function and distance norm to destination. When an 
obstacle is sensed by the particles, the algorithm generates a 
repellent Gaussian function oJ  for the obstacle and an 
attractant Gaussian DJ  function for destination. Both of 
these functions are given by eq. (2) and (3) respectively. 
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where constants (α°, μ°) and (αD, μD) define the height and 
width of repellent and attractant respectively. Po(t), qo(t) 
and PD are the positions of obstacle, robot and destination 
respectively. β is the range of sensor. The range of i and s 
vary from 1 to total number of particles n. Eq. (2) 
demonstrates that oJ is zero if the obstacle is outside the 
range of sensors. Total cost function is given by eq. (4). 

Do JJJ += . (4)

To find the best particle, error in distance to destination 
and error in cost function are calculated. The distance ds(t) 
at time t of a particle s from the goal can be computed as 
||θs(t) – PD(t)||2. If ds(t + dt) is the distance at time t + dt, 
then errors in distance and cost function are given by eq. (5) 
and (6) respectively. 
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The particle with minimum distance error having 
negative error cost function is selected as the best particle. 
Finally, the robot takes next step toward this particle with 
control u(t) as given in eq. (7). 
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2.4. BUBBLE REBOUND ALGORITHM (BRA): 
AN ENHANCEMENT OF BUBBLE BAND 

TECHNIQUE (BBT) 

BBT defines the bubbles in the robot’s surrounding by 
considering the maximum free space around it. Initially, 
obstacle-free path with sharp turns is determined by the 
path planner. This path is then regenerated with smooth and 
short trajectory based on the concept of elastic bands [15]. 
Virtual forces are applied until the elastic band reaches the 
equilibrium. These forces consider the kinematics and 
dynamics of a robot w.r.t. its configuration, obstacle’s 
position and path [16]. The concept of virtual force is 
similar to that in APF algorithm, however BBT allows the 
collision avoidance forces unlike APF. The elastic band is 
represented as a series of bubbles so as to ensure that the 
path lies within the free space. The features e.g. shape and 
size of the bubbles can be different and are determined by a 
robot’s geometry and minimum distance between the robot 
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and the obstacle in an environment.  The path from mid of 
the bubbles allows the robot to traverse safely by avoiding 
collision. Behaviour of the robot executing BBT is 
illustrated in Fig. 4.  

BRA [17] is an advanced version of BBT in which the 
bubbles are determined within the range of sensors by 
considering the possible distance that can be covered by a 
robot in a specific time interval. BRA assumes that the 
robot is equipped with an array of equidistant sonar sensors 
covering field of view (FoV) of 180°. This arrangement 
allows a half circular bubble as shown in Fig. 5. 

A robot following BRA is initially steered toward the 
destination. In case the robot encounters an obstacle in its 
path within the bubble, it adjusts itself in the direction of 
calculated rebound angle having lowest obstacles density. 

 
Fig. 4 – Illustration of BBT. 

 
Fig. 5 –  Sensor’s alignment and the bubble in BRA. 

It then starts moving in the new direction until the 
destination is visible or another obstacle is detected by the 
bubble. The rebound process is exemplified in Fig. 6, which 
shows that the robot turns to the computed rebound angle 
after detecting an obstacle and continues its motion until it 
reaches the destination. 

 
Fig. 6 –  Behaviour of the robot executing BRA. 

The rebound angle is computed by considering the 
sensors’ arrangement. Because of their uniform distribution 
in 180°, the angular separation αo is defined by eq. (8). 

No
πα = , (8)

where N is the total number of sensors. The position of ith 
sensor αi is given by eq. (9) 
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Using eq. (8) and (9), the rebound angle αR can then be 
calculated by eq. (10). 
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where Di is the distance detected by ith sensor. In a scenario 
having two obstacles which are located symmetrically, the 
rebound angle is simply π/2. 

3. NOVELTY OF THE PROPOSED STRATEGY 

 The novelty of BBA is justifiable based on the issues 
exhibited by the reported algorithms detailed below: 

3.1. DIST-BUG 

• Being a part of bug family, it is not a goal oriented 
algorithm. The path of a robot is only a function 
of minimum distance to destination. 

• It considers a robot as a point without taking into 
account its dimensions. 

• The collision may be possible in the presence of an 
obstacle adjacent to a robot especially while 
avoiding the edges of the obstacle. 

• The decisions are based on the current percepts and 
therefore sensor noise may result in a wrong decision. 

3.2. IBA 

• Limitations of IBA are similar to dist-bug 
algorithm, however it is a goal oriented algorithm 
since it takes the goal information into account 
throughout its motion. 

3.3. RPO 

• The algorithm assumes a mobile robot as a point 
robot. 

• The algorithm is designed by considering holonomic 
omni-wheeled mobile robots without taking into 
account the nonholonomic constraints. 

• The radius of the circle for random particles 
distribution is constant and is not a function of 
dynamics or dimensions of a robot. 

• It does not constrain a robot to maintain a certain 
distance from obstacles and thus the obstacles 
may lie inside the imaginary circle of particles.  
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• In case of a nonholonomic robot, collision with a 
nearby obstacle may be possible in a fully dynamic 
environment. 

3.4. BRA 

• It is not a goal oriented obstacle avoidance strategy 
since the robot avoids obstacles by considering the 
bubble rebound angle without taking into account 
direction of the goal. 

• It may take a robot far away from the destination 
in case the goal is not visible. 

• It does not offer smooth trajectory. 
• The robot may stop in front of detected obstacle in 

order to adjust its heading. 
• It may fail to work in some cases even a valid 

path to destination is available. 
• It requires defining sub-goals from source to 

destination in certain mazy-type scenarios. 
Looking onto these limitations, it is evident that there is 

no single algorithm that encompasses all the following 
features in one approach i.e. 

• Goal orientation. 
• Consideration of nonholonomic constraints, robot’s 

dimensions and surrounding. 
• Applicability for holonomic robots. 
• Execution of relatively safer trajectories by limiting 

a robot to maintain a minimum distance from 
obstacles e.g. using dynamic bubble. 

• Convergent behavior in case the destination is 
present in an environment. 

• No requirement of sub-goals in a mazy environment. 
• Simple and cost-effective control implementation 

e.g. using microcontrollers and range sensors. 
The novelty of BBA lies in proposing a strategy that 

offers all of the aforementioned salient features. 

4. PROPOSED BUBBLE BUG ALGORITHM (BBA) 

The proposed BBA offers a robust autonomous control 
by introducing a dynamic bubble around the robot to navigate 
it in a mazy-like environment. Similar to IBA, the strategy 
has two main behaviors; move to goal and obstacle avoidance. 
In move to goal behavior, the robot plans a reference path 
from its current position to destination and follows it until 
the destination is reached or an obstacle is encountered. 
After detecting an obstacle, the behavior of the robot is 
switched to obstacle avoidance, which is an advanced 
version of the corresponding behavior in IBA since it 
introduces the dynamic bubble to tackle nearby obstacles. 

4.1. INTRODUCING BUBBLE 

The circular shaped bubble takes into account the robot’s 
parameters and indicates the minimum distance at which 
the nearest obstacle can exist. It is a function of speed, 
rotational radius and distance of the nearest obstacle which 
can be determined by the range sensor. The size of the 
bubble is dynamically adjustable up to the maximum range 
of sensors with respect to the change in robot’s velocity. 
So, it will be large in size for speedy robots having long 
range sensors and short for slow robots. Reference to Fig. 7, 
if Rrob is the robot’s rotational radius, Vrob is its velocity and 

Dmax is the maximum allowable distance for nearest 
obstacle, the radius of the bubble Rbub can be determined by 
eq. (11) 
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Considering the limitations of a physical robot, two 
assumptions are taken i.e. Vrob can vary from 0 to Dmax/4 
and Rrob <<  Dmax, where in the first assumption, Dmax/4  is 
selected to take into account the sensor’s limitations i.e. the 
robot’s velocity must be within the range of the sensors so 
that it can navigate safely without being affected by the sensor’s 
noise. The second assumption implies the sensor’s efficiency 
(range) w.r.t. the robot’s rotational radius. The radius of the 
bubble must satisfy this assumption so that the robot can 
turn in its vicinity without encountering a collision during 
edge following process. The sensor’s alignment with the 
bubble is illustrated in Fig. 7. 
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Fig. 7 –  Dynamic bubble with sensors’ alignment 

4.2. OBSTACLE AVOIDANCE IN BBA 
In obstacle avoidance behavior, the robot computes the 

heading angle using eq. (10) and adjusts itself by rotating 
along its own axis while considering the nonholonomic 
constrains for safe navigation. After adjusting itself, the 
robot starts following edges of the obstacle in the same way 
as in IBA. Simultaneously, it monitors the presence of 
obstacles in its surrounding. Figure 8 depicts the behavior 
of the robot executing BBA. 

 
Fig. 8 –  Behaviour of the robot executing BBA. 

During the edge following process, if the robot 
encounters an obstacle within the bubble, it starts following 
the boundary of the new obstacle. In case, two or more 
obstacles are encountered, the robot follows edges of the 
nearest obstacle. For symmetric obstacles (i.e. obstacle sensed 
by sensors 1 and –1), the resultant heading angle is zero and 
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the robot is attuned toward 90º to follow the boundary as 
discussed in [17]. The flowchart of BBA is presented in 
Fig. 9, which clearly defines the obstacles detection in both 
behaviors of the robot. The robot continuously monitors 
upcoming obstacles and considers visibility of the goal 
during edge following process. The switching condition 
from obstacle avoidance to move to goal is also based on 
visibility of obstacle-free path toward destination. 

 
Fig. 9 – Flowchart of BBA. 

5. SIMULATION RESULTS 

The contribution of the proposed approach has been 
demonstrated in simulation. For this purpose, a virtual 
environment is created using MATLAB running on 2014a, 
running on a computer with the following specifications; 
HP 1000 Notebook, Intel® Core™ i3-2370M CPU @ 2.40 GHz 
and 64-bit Operating System (OS). After implementing the 
algorithms in MATLAB programming environment, the 
results are achieved to compare performance of IBA and 
BBA with the reported algorithms. Three main simulated 
scenarios are presented below: 

5.1. SCENARIO-1: IMPROVEMENT OF IBA 
OVER DIST-BUG ALGORITHM 

Comparing the performance of IBA and dist-bug algorithm 
in the same environment, Fig. 10 presents the corresponding 
robot trajectories. The behavior of the robot in dist-bug 
algorithm is illustrated in Fig. 10a, where the robot is 
following the edge of the obstacle until it reaches to the 
leaving point having minimum distance to destination. 
Simulation result of IBA shown in Fig. 10b indicates that 
the robot follows edges of the obstacle until it finds a clear 
path toward the destination.  

 
Fig. 10 – Robot trajectories for performance comparison 

 using  a) dist-bug algorithm; b) IBA. 

A path cost plot given in Fig. 11 presents the time taken 
by the two algorithms. Comparing the robot trajectories 
confirms that IBA improves dist-bug algorithm since the 
trajectory profile of the former approach is comparatively 
shorter and smoother. For the given scenario, time taken by 
IBA and dist-bug algorithm is 162 s and 179 s respectively, 
which highlights 9.5 % over-performance of IBA in terms 
of path cost. 
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Fig. 11 – Path cost comparing dist-bug and IBA. 

5.2 SCENARIO-2: NOVELTY OF BBA 
IN CONTRAST WITH IBA 

Consider a scenario of two obstacles placed closer to 
each other in a virtual environment. Figure 12a shows the 
behavior of the robot in IBA, where the robot starts following 
the reference path. After encountering an obstacle in its 
path, the robot starts avoiding it by following its edges. 
Meanwhile, it collides with another nearby obstacle and 
diverges from its path ultimately losing the way toward 
destination. Figure 12b illustrates the behavior of BBA in 
the same scenario. The robot initially tracks the reference 
path and after detecting an obstacle, it starts following its 
edges. After finding second obstacle, the robot adjusts itself 
in the direction of calculated heading angle and starts 
following the edges of the second obstacle. Finally, it 
reaches the destination without collision thus highlighting 
the novelty of BBA in contrast with IBA. 

 
Fig. 12 – Robot trajectories for performance comparison. 
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using a) IBA; b) BBA. 

5.3 SCENARIO-3: CONVERGENCE OF BBA IN MAZY 
ENVIRONMENT IN COMPARISON WITH BRA 

Scenario 3 deals with the limitations of BRA as it 
requires sub-goals to converge in a mazy environment. A 
virtual environment for this scenario is created that consists 
of an obstacle placed in such a way that it hinders the line 
of sight (LOS) of source and destination. Fig. 13a shows 
the behavior of the robot under BRA, where the robot starts 
following the path toward destination. On encountering the 
obstacle, the robot avoids it by moving toward the defined 
sub-goal 1. After reaching there, it follows the path toward 
the second sub-goal and finally reaches the destination. 
Simulation result of the proposed BBA is illustrated in Fig. 
13b. The robot continuously follows the edges of the 
encountered obstacle until it finds a clear path toward 
destination without requiring sub-goals. 

 
Fig. 13 – Robot trajectories for performance comparison using: 

a) BRA; b) BBA. 

The path cost of BBA is improved by 5.63 % in 
comparison with BRA which is evident in Fig. 14 since 
BBA takes 134 s whereas BRA takes 142 s in reaching the 
destination. The robot executing BBA does not need to stop 
in front of the obstacle for adjusting itself as the adjustment 
is made continuous during the edge following process. The 
proposed approach does not take the robot away from the 
goal and thus requires less time to converge. The time 
comparison graph confirms efficiency of BBA in the given 
scenario without suffering from sub-goals constraint. 
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Fig. 14 – Path cost comparing BRA and BBA. 

6. CONCLUSIONS 
The paper presents a novel approach to improve IBA and 

BRA for navigating mobile robots autonomously. The 
proposed BBA offers short trajectory in lesser time as 
compared to other reported algorithms. Comparison of BBA 
with existing bubble based approach in terms of time cost 
function dictates over performance of the presented approach. 
The algorithm finds potential in applications deploying 

mobile robots in unknown static as well as dynamic 
environments. Going beyond mobile robots, result of this 
research can also be mapped on other real-world scenarios 
e.g. collision avoidance in a car parking system by combining 
BBA with intelligent follow the gap method (IFGM). It is 
envisaged in near future to investigate optimization and 
robustness of BBA more rigorously in relatively much 
complicated scenarios by implementing it on a real robotic 
platforms. 
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