
 Rev. Roum. Sci. Techn.– Électrotechn. et Énerg.
 Vol. 64, 4, pp. 417–422, Bucarest, 2019

1 University Politehnica of Bucharest, Bucharest, Romania, E-mail: octavian.catrina@elcom.pub.ro.

COMPARATIVE ANALYSIS OF SECURE POLYNOMIAL
EVALUATION PROTOCOLS

OCTAVIAN CATRINA1

Key words: Cryptographic protocols, Secure multiparty computation, Secure floating-point arithmetic, Polynomial evaluation.

Secure computation provides cryptographic protocols that support collaborative applications with private inputs and outputs.
We examine in this paper a collection of protocols that evaluate polynomials with private inputs and outputs using secure
floating-point arithmetic. A first goal is to provides a comparative analysis of their tradeoffs and performance. Moreover, the
analysis is an opportunity to discuss several general problems: the tradeoffs between complexity metrics, their effects on protocol
performance, and the importance of the execution environment in the experimental evaluation of secure computation protocols.

1. INTRODUCTION

Secure computation is a branch of cryptography that
enables groups of parties to run collaborative applications
without having to reveal their private inputs (e.g., for legal
or business reasons). The parties run a distributed
computation that protects data privacy using cryptographic
techniques (e.g., linear secret sharing or homomorphic
encryption). A fundamental challenge of secure
computation is to find solutions that meet the application
requirements, despite the inherent computation and
communication overhead of the cryptographic protocols.

The applications include statistical analysis, data mining,
and optimization of business processes, which require
secure computation with real numbers [1–5]. In this paper,
we focus on the evaluation of polynomials with private
inputs (variables and coefficients) and private outputs,
using floating-point arithmetic. An important application of
these protocols is the secure evaluation of elementary
functions by polynomial approximation.

We start from a family of secure floating-point arithmetic
protocols based on secret sharing introduced in [6]. Follow-
up work presented optimized protocols for multi-operand
multiplication [7] and addition [8], with examples of their
use in polynomial evaluation.

Our main goal is to provide a joint comparative analysis
of the performance and tradeoffs of this collection of
polynomial evaluation protocols. On the other hand, this
analysis is an opportunity to examine several general
problems: the tradeoffs between complexity metrics, their
effects on protocol performance, and the importance of the
execution environment in the experimental evaluation.

The paper is structured as follows. Section 2 is an
overview of the secure computation framework, data
encoding, and floating-point arithmetic protocols. In
Section 3, we examine the design, complexity, and
tradeoffs of the polynomial evaluation protocols and in
Section 4 we analyze their performance. The main results
are summarized in Section 5.

2. SECURE ARITHMETIC

2.1 SECURE COMPUTATION FRAMEWORK

The protocols discussed in this paper are part of the
secure computation framework described in [6–8], that
relies on standard primitives for secure computation using
Shamir secret sharing [9] and related techniques [10,11].

We provide in the following a brief overview of this
approach to secure computation.

We assume n  2 parties, Pi, i[1, n], that communicate
on secure channels and want to run a joint computation
where party Pi has private input xi and expects output yi.
The parties use a linear secret-sharing scheme to create a
distributed state of the computation, where each party has a
random share of each secret variable, [xi], i[1, n]. Then,
they run secure computation protocols that compute the
shared outputs [yi], i[1, n], preserving data privacy
throughout the computation. Finally, they deliver to every
party Pi its output yi using the secret reconstruction protocol
of the secret sharing scheme.

The core primitives use Shamir secret sharing over a
finite field F and provide secure arithmetic in F with perfect
privacy in the semi-honest model (assuming ideal secure
channels). In this model, the parties do not deviate from the
protocol and any t + 1 parties can reconstruct a secret, while
t or less parties cannot distinguish it from random values in
F. In this paper, we focus on protocols that use the field of
integers modulo a prime q, denoted Zq. The parties locally
compute addition/subtraction of shared field elements by
adding/subtracting their own shares. Tasks that involve
multiplication require interaction and are computed by
dedicated protocols. These protocols offer either perfect
privacy, or statistical privacy with security parameter  (for
ideal secure channels) [7].

Throughout the paper, the logarithms are taken to base 2.
The notation x = (condition)? a : b means that x is assigned
the value a if condition = true and b otherwise.

2.2. DATA ENCODING

Secure computation with Boolean, integer, fixed-point,
and floating-point data types is achieved by encoding the
data in F and using secure arithmetic in F. The data types
are defined as follows:

 Binary values are naturally encoded as 0F and 1F.
 Integer numbers Zk = {x  Z | x [2k1, 2k11]},
are encoded in Zq by fld : Zk  Zq, fld(x) = x mod q,
for q  2k+, where  is the security parameter
(x  [2k1, 1] are mapped to x  [q2k1, q1]).
 Fixed-point numbers Q'k,f = {x  Q | x = v2f, v 
Zk, f  k} are first mapped to Zk by int : Qk,f  Zk,
v = int(x) = x2f, and then encoded in Zq.
 The set of floating-point numbers, Ql,g, is defined
by tuples v, p, s, z, where v  [2l1, 2l1]  {0}, is
the unsigned, normalized l-bit significand, p  Zg is

418 Comparative analysis of secure polynomial evaluation protocols 2

the signed g-bit exponent, s = (v  0)? 1: 0, and z =
(v = 0)? 1: 0. These values are encoded in Zq as
described above. The number's value is x = (12s)v2p.
If x = 0 then v = 0, z = 1, and p = 2g1.

 Secure arithmetic requires a modulus q  22k+ for fixed-
point numbers and q  22l+ for floating-point numbers.
However, some optimizations require a larger modulus [7].

2.3. COMPLEXITY AND PERFORMANCE

The parties run a synchronized distributed computation
that alternates local computation and interactions. They run
the same algorithm on their local set of variables and
communicate when they reach an interactive operation:
share a secret variable, multiply two shared variables, or
reconstruct a shared variable.

Fig. 1 – Interaction rounds during secure computation.

Figure 1 shows a simple task with 2 interactive
primitives, executed either sequentially, or in parallel.
Sequential execution proceeds as follows:

 PO1: Run locally until the computation reaches an
interactive operation; prepare the data to be sent
during this operation.
 SO1: Send data to the other parties (same amount).
 RO1: Receive data from the other parties.
 FO1: Process received data to finish the operation.
 PO2-FO2: Repeat the same steps for the next
interactive operation.

The exchanged data depends only on the sender's local
state, so sending and receiving can be done in parallel. The
computation is synchronized at every interactive operation:
all parties must receive all the expected data from the others
before continuing the execution of the protocol.

We run a batch of interactive primitives in "parallel'' by
executing each of the steps listed above for the entire batch,
so the computation is achieved with a single interaction
(Fig. 1). The messages exchanged by the interactive
primitives contain a very small payload: a single field
element. This means 16–20 octets for secret integers
encoded in Zq. By parallel execution, we aggregate these
tiny payloads in a single large message, to reduce packet
encapsulation overhead and take advantage of efficient bulk
data transfer methods. For large batches, local computation
can be allocated to multiple threads, to benefit from
multiple processors and/or cores. Thus, parallel algorithms
are essential for fast and efficient secure computation.

The protocols' design assumes the following general
optimizations. Interactive operations that do not depend on
each other are executed in parallel, in a single round. Thus,
all shared random values are precomputed in parallel. Some
of them require interaction, while others are locally

generated using techniques presented in [10,11].
We evaluate the protocols using complexity metrics that

focus on interaction:
 Communication complexity measures the amount
of data sent by each party. We use an abstract metric
that counts the invocations of 3 primitives that send a
share from each party to the others: input sharing,
multiplication, and secret reconstruction.
 Round complexity is the number of sequential
invocations of (batches of) interactive primitives and
emphasizes the effects of network delay components
that are independent of the amount of data.

2.4. FLOATING-POINT ARITHMETIC PROTOCOLS

The floating-point protocols used for polynomial
evaluation are listed in Table 1 [7,8]. Let a1, a2, aQl,g, a1
= (12s1)v12

p1, a2 = (12s2)v22
p2, a = (12s)v2p.

The protocol AddFL computes a = a1+a2 (or a = a1a2)
with secret inputs and output. Let v'1 = (12s1)v1 and v'2 =
(12s2)v2. Assume p1  p2 and let  = p1p2 (if p1  p2 the
inputs are swapped). We want v' and p' so that v' 2p' v'12

p1
+ v'22

p2. The protocol consists of 2 main sub-tasks:
 Align the radix point and add the significands: set
p' = p1 and v' = v'1 + v'2 /2

  [2l+1, 2l+12].
 Normalize v' and p' to obtain aQl,g.

Both sub-tasks are expensive, so secure floating-point
addition and subtraction are much more complex than
multiplication and division. The normalization needs 9
rounds (out of 16) and 5l online interactive operations (out
of 6l +3g+29). The precomputation is also expensive.

MulFL computes a = a1a2 with secret inputs and output.
It starts by computing v3 = v1v2, p3 = p1 + p2, s = s1  s2, and
z = z1  z2, and then normalizes the result. Since v3  [22l2,
22l2l+1+1]{0}, the normalization is much simpler than
for addition: if v3  22l1 then v = v3 / 2

l1 and p = p3 + l 1,
otherwise v = v3 /2l and p = p3 + l. Nevertheless, the
complexity is dominated by normalization: 4 rounds (out of
5) and l+4 online interactive operations (out of l+7).

The applications also need multi-operand arithmetic:

compute  
 1

0
m
i iaa and  

 1
0

m
i iaa for secret ai  Ql,g,

ai = (12si)vi2
pi, i  [0, m1], and a  Ql,g, a = (12s)v2p.

Since sequential computation is inefficient, we need
algorithms that execute many operations in parallel.

Fig. 2 – Generic construction for multi-operand arithmetic.

The traditional approach uses AddFL and MulFL in the
generic algorithm shown in Fig. 2. The algorithm computes
m1 operations (optimal) in log(m) iterations. Each
iteration takes as input a vector, splits it into pairs of
elements, adds or multiplies them in parallel, and returns
the results in a vector of half length.

3 Octavian Catrina 419

The protocols SumGFL and ProdGFL compute sums and

products using this generic parallel algorithm. However,
both are relatively expensive (Table 1). We can obtain more
efficient solutions based on the complexity analysis of
AddFL and MulFL, outlined above.

The protocol SumFL uses a more efficient algorithm for
multi-operand addition. We need v, p, and s so that (12s)2p

= 
 1

0
2)21(

m

i
ip

ii vs . Let v'i = (12si)vi, p' = max({pi}),

and i = p'pi. SumFL uses the following algorithm [8]:
 Align the radix point and add the significands:
Compute p' using the protocol MaxInt and then

  


 1
0 2/m

i
i

ivv by generalizing the method in

AddFL. The maximum bit-length of v' is l + log(m).
 Normalize v' and p' to obtain a  Ql,g, as in the
protocol AddFL.

MaxInt computes m1 secure comparisons in log(m)
iterations, using the generic algorithm in Fig. 2. Each
iteration takes as input a vector, splits it into pairs of
elements, selects in parallel the larger value in each pair,
and returns the results in a vector of half length.

SumFL reduces round complexity and communication
complexity by simplifying the radix alignment and
normalizing only once (Table 1). Since q 22l+ (for
multiplication), the growth of the maximum integer
bitlength by log(m) bits does not require larger q.

The protocol ProdFL computes products more efficiently
than ProdGFL [7]. It is based on the same algorithm as
ProdGFL (Fig. 2), but simplifies the multiplication of the
significands and normalizes only once. Instead of aj =
a2j1a2j, the iterations compute vj = v2j1v2j / 2

l1, vj  [2l1,
2l+1  22]  {0}and pj = p2j1 + p2j  (l1). The simplified
multiplication is computed in a single round (instead of 5),
but increases the bitlength of v' by l'[0, m1] bits. Larger
integer bitlength means more complex normalization and
larger modulus. The normalization takes on input v'  [2l1,
2l+l'1]  {0}, so it is more complex than in MulFL (larger

range), but simpler than in SumFL (smaller range). The

maximum integer bitlength is l'' = 2l + m 2 (in the last
iteration, before truncation), so the protocol needs q
22l++m2. However, for practical values of m, ProdFL is
more efficient than ProdGFL (Table 1).

We conclude this section with the protocol PowAllFL,
which plays an important role in secure polynomial
evaluation [7]. PowAllFL computes all powers xi, i[1, m],
with secret input and outputs, using MulFL and the generic
algorithm shown in Fig. 3. The algorithm computes m1
floating-point multiplications, which is optimal, in log(m)
iterations. A variant with simplified multiplications, similar
to ProdFL, is inefficient, since it needs m1 normalizations
in the end, with input bitlengths l+ l', l' [0, m1].

Fig. 3 – Generic construction for computing all powers.

3. SECURE POLYNOMIAL EVALUATION

Our final goal is to evaluate a polynomial with secret
inputs (variables and coefficients) and secret outputs:

 m

i
i

ixaxPy
0

)(, ai  Ql,g, ai = (12si)vi2
pi, i  [0, m1],

and x, y  Ql,g, x = (12s)v 2p, y = (12s')v' 2p'.
The design of polynomial evaluation protocols must take

into account the specific features of secure floating-point
arithmetic: addition is much slower than multiplication (for
m  2 operands); normalization is expensive; performance
is substantially improved by parallel execution of
interactive operations. Note that traditional algorithms are
optimized according to other assumptions. For example,

Table 1

Complexity of arithmetic protocols for floating-point numbers with l-bit significand and g-bit exponent (selection).

Protocol Task Rounds Interactive operations (online) Modulus

AddFL a1 + a2 16 6l + 3g + 29 (precomputation: 13l + 9g) q  2l+

MulFL a1  a2 5 l + 7 (precomputation: 4l + 3) q  22l+

SumGFL  


1
0

m
i ia 16 log(m) 6(m  1)l + (m  1)(3g + 26) q  2l+

SumFL  


1
0

m
i ia 4 log(m) + 15 (m + 5)l + m(2g + 8) q  2l++ log(m)

ProdGFL  


1
0

m
i ia 5 log(m) (m  1)l + 6(m  1) q  22l+

ProdFL  


1
0

m
i ia log(m) + 6 2l + 7(m  1) q  22l++m2

PowAllFL xi, i  [1, m] 5 log(m) (m  1)l + 5(m  1) q  22l+

Table 2

Complexity of polynomial evaluation protocols for floating-point numbers with l-bit significand and g-bit exponent.

Protocol Task Rounds Interactive operations (online) Modulus

PolyEFL im
i i xa 0 18 log(m+1) (6m + log(m+1))l + m(3g + 39) + 4log(m+1) q  22l++2

PolySGFL im
i i xa 0 21 log(m) + 5 8ml + m(3g + 41) q  22l+

PolySFL im
i i xa 0 9 log(m) + 16 (2m + 4)l + m(2g + 16) q  22l++ log(m)

PolySOFL im
i i xa 0 4 log(m) + 17 (m + 5)l + m2 + m(2g + 18) q  22l++m

PolyPFL)(1  m
i ix log(m) + 22 (6m +2)l + m(3g + 36) q  22l++m2

420 Comparative analysis of secure polynomial evaluation protocols 4

Horner's algorithm is sequential [13], so it is not suitable for
secure computation. We examine in the following several
protocols that offer different tradeoffs.

PolySGFL is a generic polynomial evaluation protocol
that uses the generic arithmetic protocols discussed in
Section 2: it computes xi = xi = v'i , p'i , s'i , z'i using
PowAllFL and yi = aixi = v"i , p"i , s"i , z"i using MulFL,

for i[1, m], then   m

i iyy
0

, with y0 = a0. This solution

is simple, but expensive (Table 2).
Estrin's parallel algorithm [13] computes m1 multiply-

and-add operations in log(m+1) iterations, structured as in
Fig. 2, and an additional square operation per iteration. A
protocol based on this algorithm, PolyEFL, is similar to
SumGFL, but the iterations run a multiply-and-add protocol
instead of AddFL [7]. However, its complexity is
dominated by additions (it is slightly more complex than
SumGFL) and the improvement is rather modest (Table 2).

Alternatively, we can optimize PolySGFL as shown in
Protocol P1, PolySFL. Step 1 computes the significands
and exponents of xi = xi, i  [1, m] with Protocol P2,
PowAllFLS. The protocols PowAllFLS and MulFLS are
variants that skip the computation of s and z; they are
computed in parallel in steps 2–4, in a single round. Steps
5-7 compute yi = ai xi, i[1, m], without normalization: v''i
= vi v'i / 2

l1 [2l1, 2l+14]  {0}; if z''i = 0 then p''i = p'i +
pi + l  1 else p''i = 2g1. Steps 8 and 9 compute

  m

i iyy
0

, using a slightly modified variant of SumFL,

with input significands of l +1 bits and output significands
of l bits.

 P1: PolySFL([v], [p], [s], [z], {[vi], [pi], [si], [zi]} m
i 0 , l, g)

1 {[v'i], [p'i]} m
i 1  PowAllFLS([v], [p], m, l, g);

2 foreach i[1, m] do in parallel
3 [s"i]  (i mod 2 = 1)? [si] : [s]  [si];
4 [z"i]  [z]  [zi];
5 foreach i[1, m] do in parallel
6 [v"i]  Div2mPD([vi][v'i], 2l, l1);
7 [p"i]  ([pi] + [p'i] + l1)(1 [z"i])  [z"i]2

g-1;
8 ([v"0], [p"0], [s"0])  ([v0], [p0], [s0]);
9 ([v'], [p'], [s'], [z'])  SumFL({[v"i], [p"i], [s"i]} m

i 0 , l+1, l, g);

10 return ([v'], [p'], [s'], [z']);

P2: PowAllFLS ([v], [p], m, l, g)
1 ([v1], [p1])  ([v], [p]);   log(m);
2 foreach i[1, ] do
3   2i1;   (i  )?  : m  ;
4 foreach j[1, ] do
6 ([v+j], [p+j])  MulFLS([v], [p], [vj], [pj], l, g);
7 return {[vi], [pi]} m

i 1 ;

PolySFL achieves an important reduction of the round
and communication complexity with respect to both
PolySGFL and PolyEFL (Table 2). We can try to further
simplify it by separating the computation of v''i and p''i:

 Compute p"i, i[1, m]: if z''i = 0 then p''i = pi + ip
+ l  1, else p''i = 2g1. Set p''0 = p0.
 Compute in parallel p' = max({pi}) using MaxInt
(for SumFL) and v'i, i[1, m], without normalization,
using a simpler variant of PowAllFLS.
 Finalize the polynomial evaluation as in PolySFL.

For this variant, called PolySOFL, the tradeoff is more
complicated (Table 2): it further reduces the number of
rounds, but the maximum integer bitlength becomes 2l + m.
Larger integers means larger modulus and higher
communication complexity for the computation of the sum.
For m  l, PolySOFL needs more interactive operations
than PolySFL, with a larger modulus. This may cancel the
benefits of the lower number of rounds.

Assume now that the roots of P(x) are the real numbers
i, i[1, m], and the application can precompute them (a
similar approach works for complex roots). Our task can be

reformulated as the evaluation of)()(
1 


m

i ixxP .

This is shown in Protocol P3, PolyPFL [7]. By computing
the factors in parallel and then using ProdFL, this variant
offers the lowest round complexity (Table 2). However, the
communication complexity, dominated by AddFL, is quite
large, and ProdFL requires a larger modulus.

P3: PolyPFL([v], [p], [s], [z], {[vi], [pi], [si], [zi]} m
i 0 , l, g)

1 foreach i[1, m] do in parallel
2 ([v'i], [p'i], [s'i], [z'i]) 
 AddFL([v], [p], [s], [z], [vi], [pi], [si], [zi], l, g);

3 ([v'], [p'], [s'], [z'])  ProdFL({[vi], [pi], [si], [zi]}
m
i 1 , l, g);

4 return ([v'], [p'], [s'], [z']);

4. EXPERIMENTAL RESULTS

The protocols run a distributed, synchronized
computation, with batches of interactive operations
executed in parallel. Therefore, their running time depends
on available processing and communication resources, as
well as implementation optimizations aimed at using these
resources more efficiently (especially for large batches).

The complexity listed in Table 2 shows that PolySFL,
PolySOFL, and PolyPFL are more efficient than PolySGFL
and PolyEFL, so they should be much faster. However, the
optimizations offer different tradeoffs between complexity
metrics, so it is not obvious which variant is faster in
different execution environments. Moreover, some
optimizations move part of the workload from online
interaction to local computation and precomputation. This
approach is justified by several observations:

 The protocols combine local computation and
interaction over the Internet. The parties can allocate
endpoint resources based on application requirements
and budget constraints, but have limited control over
network performance. As technology evolves, the cost
of improving endpoint performance declines faster.
 Precomputation (local and interactive operations)
can be efficiently executed in parallel for all the sub-
tasks of a complex task, in a single interaction round.

The effects of local computation and precomputation on
the total running time are significant and have to be taken
into account in the evaluation of the protocols, as well as in
the design of their implementations.

We studied the behavior of the polynomial evaluation
protocols using our Java implementation of the secure
computation framework. The aim of this implementation is
to provide early feedback during protocol design, including
correctness and accuracy tests, verification of complexity
metrics (rounds and amount of data), and comparative
analysis of protocol variants.

5 Octavian Catrina 421

To facilitate protocol development and analysis, the

implementation is single-threaded (except that data sending
and receiving run in parallel on different threads).

We evaluated PolySGFL, PolySFL, PolySOFL, and
PolyPFL (abbreviated SG, S, SO, and P, respectively) for 3
parties, polynomials of degree m {4, 8, 16, 32}, and
floating-point numbers with l = 32 bits and g = 10 bits,
encoded in a field with log(q) = 128 bits. For degree m =
32, PolySOFL and PolyPFL need log(q) = 160 bits.

Table 3 shows the complexity of the implementations for
the configuration parameters used in the tests: the number
of online rounds and the amount of data sent by party Pi to
party Pj during the online and precomputation phases. The
number of rounds is slightly larger than the minimum
allowed by protocol design due to implementation tradeoffs
between modularity and round optimization. The minimum
round complexity is specified between brackets; note also
that the formulas in Table 2 are slightly simplified.

Table 3

Complexity of the implementation of polynomial evaluation protocols.

 Online Precomputation

m Protocol Rounds Octets Octets

4 PolySGFL 69 (63) 19998 41298

 PolySFL 41 (38) 9449 22935

 PolySOFL 33 (29) 8176 19662

 PolyPFL 28 (24) 17108 32167

8 PolySGFL 92 (86) 40587 84375

 PolySFL 50 (47) 15889 40875

 PolySOFL 38 (33) 13452 34600

 PolyPFL 30 (25) 33286 63104

16 PolySGFL 115 (105) 81783 170500

 PolySFL 59 (56) 28698 76607

 PolySOFL 43 (37) 25546 68685

 PolyPFL 32 (26) 65658 124952

32 PolySGFL 138 (126) 164143 342724

 PolySFL 68 (65) 54227 147948

 PolySOFL 48 (41) 69842 177384

 PolyPFL 34 (27) 162999 290607

Fig. 4 – Frequency distribution of the amount of data sent in a round.

Figure 4 shows the frequency distribution of the amount
of data sent in a round for a polynomial of degree m = 32.
The amount of data varies between tens of octets and tens
of thousands of octets (depending on the number of
interactive primitives run in parallel and the size of the field
elements). Observe that many rounds send less than a
typical full packet payload (1460 octets) and only few
rounds need tens of packets. Combined, the two abstract
complexity metrics provide good performance predictions,

but the workload per round varies a lot. Therefore, we need
experimental analysis to understand the effects of different
tradeoffs.

The protocols' running time was measured in a testbed
consisting of 3 computers with 3.6 GHz processors (a
computer for each party) connected to an Ethernet local
area network (LAN). The computers run the operating
system Linux 18.04. Longer Internet delays were emulated
using the Linux network emulation tool NetEm, which
increased the one-way transfer delay by 10 milliseconds.

Fig. 5 – Online and total running-time for 1 Gbps Ethernet LAN.

Fig. 6 – Online and total running-time for simulated Internet.

422 Comparative analysis of secure polynomial evaluation protocols 6

Figure 5 shows the protocols' running time for parties

connected to an Ethernet LAN with 1 Gbps data rate and
0.35 milliseconds round-trip time. Figure 6 shows the
running time for emulated Internet paths, with 100 Mbps
end-to-end data rate and 20.8 milliseconds round-trip time.
Solid lines show the online running time. Dotted lines show
the total time, including the precomputation.

The results show that all the optimized variants are
clearly faster than PolySGFL, for both network types.
Moreover, their performance gain grows significantly for
slower networks. This shows that the optimizations are
effective and confirms the predictions of the complexity
metrics (combined effects of reducing both metrics).

The running time and ranking of the optimized variants
depend on network performance and polynomial degree:

 In LAN tests (Fig. 5), the near-zero network delay
strongly attenuates the benefits of low round
complexity. The results suggest that PolySFL offers
the best tradeoff, with good performance over a larger
range of m.
 For simulated Internet (Fig. 6), the results of the
experiments emphasize the importance of lower round
complexity: PolySOFL and PolyPFL are faster than
PolySFL, even for larger m.
 For m = 32, the running time of PolySOFL and
PolyPFL grows faster due to the larger integer and
modulus bitlength needed by ProdFL.

The single-thread implementation does a poor job
handling large batches of operations. This affects the online
computation and, especially, the precomputation, for both
network types. The inefficiency is better observed in LAN
tests: most of the precomputation time was spent on local
computation (the total load of the quad-core processor was
about 20 % and the average data transfer rate was less than
50 Mbps). The running time can be substantially reduced
by optimizing batch processing, so that the implementation
distributes the workload on multiple processor cores and
transfers the data more efficiently on network paths with
high bandwidth-delay product.

5. CONCLUSIONS

We examined a family of secure computation protocols
that evaluate polynomials with secret floating-point inputs
and output [7,8], to provide a comparative analysis of their
construction, complexity, and running time.

These protocols rely on the same secure computation
model, based on Shamir secret sharing, and the same
collection of building blocks, but offer different tradeoffs
between round and communication complexity.

We observed that the abstract complexity metrics offer
useful performance predictions, but we need experimental
analysis to understand the effects of the tradeoffs.

The performance of secure computation protocols is
usually reported for lab environments with near-zero
network delay and highest data rate (e.g., 1 or 10 Gbps).

However, these ideal conditions are not available (or
affordable) in practical deployments of secure computation,
when mutually distrustful organizations communicate via
the Internet. Experiments in fast LANs provide useful
information about implementation optimizations and the
protocols' best possible running time. However, in this
environment, the communication delay almost vanishes, so

the experiments offer rather poor guidance for protocol
optimizations, comparison of different solutions or
tradeoffs, and practical protocol performance.

For the polynomial evaluation protocols analyzed in this
paper, LAN tests show a clear advantage of the optimized
variants over PolySGFL, but attenuate the advantage of
PolySOFL and PolyPFL, suggesting that PolySFL is better.
Experiments with a more realistic communication delay
show higher performance gains for the optimized variants
and reverse their ranking, emphasizing the importance of
round-efficient solutions.

The optimized variants have their own advantages and
disadvantages and choosing the most suitable variant
depends on specific application requirements (e.g.,
PolySFL scales up better with m, PolyPFL requires the
roots of the polynomial) and execution environment (e.g.,
PolyPFL is faster for Internet communications). On the
other hand, optimizing the implementation of large batches
is essential for improving the overall performance.

Received on October 15, 2019

REFERENCES

1. D. Bogdanov, L. Kamm, S. Laur, V. Sokk, Rmind: A Tool for
Cryptographically Secure Statistical Analysis, IEEE Transactions
on Dependable and Secure Computing, 15, 3, pp. 481–495 (2018).

2. M. Aliasgari, M. Blanton, F. Bayatbabolghani, Secure Computation of
Hidden Markov Models and Secure Floating-point Arithmetic in
the Malicious Model, International Journal of Information
Security, 16, 6, pp. 577–601 (2017).

3. L. Kamm, J. Willemson, Secure Floating Point Arithmetic and Private
Satellite Collision Analysis, International Journal of Information
Security, 14, 6, pp. 531–548 (2015).

4. D. Bogdanov, M. Niitsoo, T. Toft, J. Willemson, High-performance
Secure Multi-party Computation for Data Mining Applications,
International Journal of Information Security, 11, 6, pp. 403–418
(2012).

5. F. Kerschbaum, A. Schröpfer, A. Zilli, R. Pibernik, O. Catrina, S. de
Hoogh, B. Schoenmakers, S. Cimato, E. Damiani, Secure
Collaborative Supply-Chain Management, IEEE Computer, 44, 9,
pp. 38–43 (2011).

6. O. Catrina, Efficient Secure Floating-point Arithmetic Using Shamir
Secret Sharing, In: 16th International Joint Conference on e-
Business and Telecommunications - 2: SECRYPT (Security and
Cryptography), SciTePress, 2019, pp. 49–60.

7. O. Catrina, Optimization and Tradeoffs in Secure Floating-Point
Computation: Products, Powers, and Polynomials, In: Proc. of the
6th Conference on the Engineering of Computer-Based Systems
(ECBS’19), ACM, 2019, pp. 7:1–7:10.

8. O. Catrina, Optimizing Secure Floating-point Arithmetic: Sums, Dot
Products, and Polynomials, In: Proc. of the 5th Romanian
Cryptology Days Conference (RCD-2019), 2019.

9. R. Cramer, I. Damgård, J. B. Nielsen, Secure Multiparty Computation
and Secret Sharing, Cambridge University Press, 2015.

10. R. Cramer, I. Damgård, Y. Ishai, Share Conversion, Pseudorandom
Secret-sharing and Applications to Secure Computation, In:
Theory of Cryptography (TCC’05), Lecture Notes in Computer
Science, 3378, Springer, 2005, pp. 342–362.

11. I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, T. Toft, Unconditionally
secure constant-rounds multi-party computation for equality,
comparison, bits and exponentiation, In: Theory of Cryptography
(TCC 2006), Lecture Notes in Computer Science, 3876, Springer,
2006, pp. 285–304.

12. I. Damgård, R. Thorbek, Non-interactive Proofs for Integer
Multiplication, In: Advances in Cryptology - EUROCRYPT 2007,
Lecture Notes in Computer Science, 4515. Springer, 2007, pp.
412–429.

13. D. E. Knuth, The Art of Computer Programming, 2 (3rd Ed.):
Seminumerical Algorithms, Addison-Wesley, 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

