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Secure computation provides cryptographic protocols that support collaborative applications with private inputs and outputs. 
We examine in this paper a collection of protocols that evaluate polynomials with private inputs and outputs using secure 
floating-point arithmetic. A first goal is to provides a comparative analysis of their tradeoffs and performance. Moreover, the 
analysis is an opportunity to discuss several general problems: the tradeoffs between complexity metrics, their effects on protocol 
performance, and the importance of the execution environment in the experimental evaluation of secure computation protocols. 
 

1. INTRODUCTION 

Secure computation is a branch of cryptography that 
enables groups of parties to run collaborative applications 
without having to reveal their private inputs (e.g., for legal 
or business reasons). The parties run a distributed 
computation that protects data privacy using cryptographic 
techniques (e.g., linear secret sharing or homomorphic 
encryption). A fundamental challenge of secure 
computation is to find solutions that meet the application 
requirements, despite the inherent computation and 
communication overhead of the cryptographic protocols. 

The applications include statistical analysis, data mining, 
and optimization of business processes, which require 
secure computation with real numbers [1–5]. In this paper, 
we focus on the evaluation of polynomials with private 
inputs (variables and coefficients) and private outputs, 
using floating-point arithmetic. An important application of 
these protocols is the secure evaluation of elementary 
functions by polynomial approximation.  

We start from a family of secure floating-point arithmetic 
protocols based on secret sharing introduced in [6]. Follow-
up work presented optimized protocols for multi-operand 
multiplication [7] and addition [8], with examples of their 
use in polynomial evaluation.  

Our main goal is to provide a joint comparative analysis 
of the performance and tradeoffs of this collection of 
polynomial evaluation protocols. On the other hand, this 
analysis is an opportunity to examine several general 
problems: the tradeoffs between complexity metrics, their 
effects on protocol performance, and the importance of the 
execution environment in the experimental evaluation.  

The paper is structured as follows. Section 2 is an 
overview of the secure computation framework, data 
encoding, and floating-point arithmetic protocols. In 
Section 3, we examine the design, complexity, and 
tradeoffs of the polynomial evaluation protocols and in 
Section 4 we analyze their performance. The main results 
are summarized in Section 5.  

2. SECURE ARITHMETIC 

2.1 SECURE COMPUTATION FRAMEWORK 

The protocols discussed in this paper are part of the 
secure computation framework described in [6–8], that 
relies on standard primitives for secure computation using 
Shamir secret sharing [9] and related techniques [10,11]. 

We provide in the following a brief overview of this 
approach to secure computation.  

We assume n  2 parties, Pi, i[1, n], that communicate 
on secure channels and want to run a joint computation 
where party Pi has private input xi and expects output yi. 
The parties use a linear secret-sharing scheme to create a 
distributed state of the computation, where each party has a 
random share of each secret variable, [xi], i[1, n]. Then, 
they run secure computation protocols that compute the 
shared outputs [yi], i[1, n], preserving data privacy 
throughout the computation. Finally, they deliver to every 
party Pi its output yi using the secret reconstruction protocol 
of the secret sharing scheme.  

The core primitives use Shamir secret sharing over a 
finite field F and provide secure arithmetic in F with perfect 
privacy in the semi-honest model (assuming ideal secure 
channels). In this model, the parties do not deviate from the 
protocol and any t + 1 parties can reconstruct a secret, while 
t or less parties cannot distinguish it from random values in 
F. In this paper, we focus on protocols that use the field of 
integers modulo a prime q, denoted Zq. The parties locally 
compute addition/subtraction of shared field elements by 
adding/subtracting their own shares. Tasks that involve 
multiplication require interaction and are computed by 
dedicated protocols. These protocols offer either perfect 
privacy, or statistical privacy with security parameter  (for 
ideal secure channels) [7].  

Throughout the paper, the logarithms are taken to base 2. 
The notation x = (condition)? a : b means that x is assigned 
the value a if condition = true and b otherwise.  

2.2. DATA ENCODING 

Secure computation with Boolean, integer, fixed-point, 
and floating-point data types is achieved by encoding the 
data in F and using secure arithmetic in F. The data types 
are defined as follows:   

 Binary values are naturally encoded as 0F and 1F. 
 Integer numbers Zk = {x  Z | x [2k1, 2k11]}, 
are encoded in Zq by fld : Zk  Zq, fld(x) = x mod q, 
for q  2k+, where  is the security parameter 
(x  [2k1, 1] are mapped to x  [q2k1, q1]).  
 Fixed-point numbers Q'k,f = {x  Q | x = v2f, v  
Zk, f   k} are first mapped to Zk by int : Qk,f  Zk, 
v = int(x) = x2f, and then encoded in Zq.  
 The set of floating-point numbers, Ql,g, is defined 
by tuples v, p, s, z, where v  [2l1, 2l1]  {0}, is 
the unsigned, normalized l-bit significand, p  Zg is 
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the signed g-bit exponent, s = (v  0)? 1: 0, and z = 
(v = 0)? 1: 0. These values are encoded in Zq as 
described above. The number's value is x = (12s)v2p. 
If x = 0 then v = 0, z = 1, and p = 2g1.  

 Secure arithmetic requires a modulus q  22k+ for fixed-
point numbers and q  22l+ for floating-point numbers. 
However, some optimizations require a larger modulus [7]. 

2.3. COMPLEXITY AND PERFORMANCE 

The parties run a synchronized distributed computation 
that alternates local computation and interactions. They run 
the same algorithm on their local set of variables and 
communicate when they reach an interactive operation: 
share a secret variable, multiply two shared variables, or 
reconstruct a shared variable.  

Fig. 1 – Interaction rounds during secure computation. 

Figure 1 shows a simple task with 2 interactive 
primitives, executed either sequentially, or in parallel. 
Sequential execution proceeds as follows:  

 PO1: Run locally until the computation reaches an 
interactive operation; prepare the data to be sent 
during this operation.  
 SO1: Send data to the other parties (same amount). 
 RO1: Receive data from the other parties.  
 FO1: Process received data to finish the operation. 
 PO2-FO2: Repeat the same steps for the next 
interactive operation.  

The exchanged data depends only on the sender's local 
state, so sending and receiving can be done in parallel. The 
computation is synchronized at every interactive operation: 
all parties must receive all the expected data from the others 
before continuing the execution of the protocol. 

We run a batch of interactive primitives in "parallel'' by 
executing each of the steps listed above for the entire batch, 
so the computation is achieved with a single interaction 
(Fig. 1). The messages exchanged by the interactive 
primitives contain a very small payload: a single field 
element. This means 16–20 octets for secret integers 
encoded in Zq. By parallel execution, we aggregate these 
tiny payloads in a single large message, to reduce packet 
encapsulation overhead and take advantage of efficient bulk 
data transfer methods. For large batches, local computation 
can be allocated to multiple threads, to benefit from 
multiple processors and/or cores. Thus, parallel algorithms 
are essential for fast and efficient secure computation.  

The protocols' design assumes the following general 
optimizations. Interactive operations that do not depend on 
each other are executed in parallel, in a single round. Thus, 
all shared random values are precomputed in parallel. Some 
of them require interaction, while others are locally 

generated using techniques presented in [10,11].  
We evaluate the protocols using complexity metrics that 

focus on interaction:   
 Communication complexity measures the amount 
of data sent by each party. We use an abstract metric 
that counts the invocations of 3 primitives that send a 
share from each party to the others: input sharing, 
multiplication, and secret reconstruction. 
 Round complexity is the number of sequential 
invocations of (batches of) interactive primitives and 
emphasizes the effects of network delay components 
that are independent of the amount of data.  

2.4. FLOATING-POINT ARITHMETIC PROTOCOLS 

The floating-point protocols used for polynomial 
evaluation are listed in Table 1 [7,8]. Let a1, a2, aQl,g, a1 
= (12s1)v12

p1, a2 = (12s2)v22
p2, a = (12s)v2p.  

The protocol AddFL computes a = a1+a2 (or a = a1a2) 
with secret inputs and output. Let v'1 = (12s1)v1 and v'2 = 
(12s2)v2. Assume p1  p2 and let  = p1p2 (if p1  p2 the 
inputs are swapped). We want v' and p' so that v' 2p' v'12

p1 
+ v'22

p2. The protocol consists of 2 main sub-tasks:  
 Align the radix point and add the significands: set 
p' = p1 and v' = v'1 + v'2 /2

  [2l+1, 2l+12]. 
 Normalize v' and p' to obtain aQl,g.  

Both sub-tasks are expensive, so secure floating-point 
addition and subtraction are much more complex than 
multiplication and division. The normalization needs 9 
rounds (out of 16) and 5l online interactive operations (out 
of 6l +3g+29). The precomputation is also expensive.  

MulFL computes a = a1a2 with secret inputs and output. 
It starts by computing v3 = v1v2, p3 = p1 + p2, s = s1  s2, and 
z = z1  z2, and then normalizes the result. Since v3  [22l2, 
22l2l+1+1]{0}, the normalization is much simpler than 
for addition: if v3  22l1 then v = v3 / 2

l1 and p = p3 + l 1, 
otherwise v = v3 /2l and p = p3 + l. Nevertheless, the 
complexity is dominated by normalization: 4 rounds (out of 
5) and l+4 online interactive operations (out of l+7).  

The applications also need multi-operand arithmetic: 

compute  
 1

0
m
i iaa  and  

 1
0

m
i iaa for secret ai  Ql,g, 

ai = (12si)vi2
pi, i  [0, m1], and a  Ql,g, a = (12s)v2p. 

Since sequential computation is inefficient, we need 
algorithms that execute many operations in parallel.  

 

Fig. 2 – Generic construction for multi-operand arithmetic. 

The traditional approach uses AddFL and MulFL in the 
generic algorithm shown in Fig. 2. The algorithm computes 
m1 operations (optimal) in log(m) iterations. Each 
iteration takes as input a vector, splits it into pairs of 
elements, adds or multiplies them in parallel, and returns 
the results in a vector of half length.  
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The protocols SumGFL and ProdGFL compute sums and 

products using this generic parallel algorithm. However, 
both are relatively expensive (Table 1). We can obtain more 
efficient solutions based on the complexity analysis of 
AddFL and MulFL, outlined above.  

The protocol SumFL uses a more efficient algorithm for 
multi-operand addition. We need v, p, and s so that (12s)2p 

= 
 1

0
2)21(

m

i
ip

ii vs . Let v'i = (12si)vi, p' = max({pi}), 

and i = p'pi. SumFL uses the following algorithm [8]:  
 Align the radix point and add the significands: 
Compute p' using the protocol MaxInt and then 

  


 1
0 2/m

i
i

ivv  by generalizing the method in 

AddFL. The maximum bit-length of v' is l + log(m).  
 Normalize v' and p' to obtain a  Ql,g, as in the 
protocol AddFL.  

MaxInt computes m1 secure comparisons in log(m) 
iterations, using the generic algorithm in Fig. 2. Each 
iteration takes as input a vector, splits it into pairs of 
elements, selects in parallel the larger value in each pair, 
and returns the results in a vector of half length.  

SumFL reduces round complexity and communication 
complexity by simplifying the radix alignment and 
normalizing only once (Table 1). Since q 22l+ (for 
multiplication), the growth of the maximum integer 
bitlength by  log(m) bits does not require larger q.  

The protocol ProdFL computes products more efficiently 
than ProdGFL [7]. It is based on the same algorithm as 
ProdGFL (Fig. 2), but simplifies the multiplication of the 
significands and normalizes only once. Instead of aj = 
a2j1a2j, the iterations compute vj = v2j1v2j / 2

l1, vj  [2l1, 
2l+1  22]  {0}and pj = p2j1 + p2j  (l1). The simplified 
multiplication is computed in a single round (instead of 5), 
but increases the bitlength of v' by l'[0, m1] bits. Larger 
integer bitlength means more complex normalization and 
larger modulus. The normalization takes on input v'  [2l1, 
2l+l'1]  {0}, so it is more complex than in MulFL (larger 

range), but simpler than in SumFL (smaller range). The 

maximum integer bitlength is l'' = 2l + m 2 (in the last 
iteration, before truncation), so the protocol needs q 
22l++m2. However, for practical values of m, ProdFL is 
more efficient than ProdGFL (Table 1).  

We conclude this section with the protocol PowAllFL, 
which plays an important role in secure polynomial 
evaluation [7]. PowAllFL computes all powers xi, i[1, m], 
with secret input and outputs, using MulFL and the generic 
algorithm shown in Fig. 3. The algorithm computes m1 
floating-point multiplications, which is optimal, in  log(m) 
iterations. A variant with simplified multiplications, similar 
to ProdFL, is inefficient, since it needs m1 normalizations 
in the end, with input bitlengths l+ l', l' [0, m1].  

 

Fig. 3 – Generic construction for computing all powers. 

3. SECURE POLYNOMIAL EVALUATION 

Our final goal is to evaluate a polynomial with secret  
inputs (variables and coefficients) and secret outputs: 

 m

i
i

ixaxPy
0

)( , ai  Ql,g, ai = (12si)vi2
pi, i  [0, m1], 

and x, y  Ql,g, x = (12s)v 2p, y = (12s')v' 2p'.   
The design of polynomial evaluation protocols must take 

into account the specific features of secure floating-point 
arithmetic: addition is much slower than multiplication (for 
m  2 operands); normalization is expensive; performance 
is substantially improved by parallel execution of 
interactive operations. Note that traditional algorithms are 
optimized according to other assumptions. For example, 

Table 1 

Complexity of arithmetic protocols for floating-point numbers with l-bit significand and g-bit exponent (selection). 

Protocol Task Rounds Interactive operations (online) Modulus 

AddFL  a1 + a2 16 6l + 3g + 29   (precomputation: 13l + 9g)  q  2l+ 

MulFL  a1  a2 5 l + 7               (precomputation: 4l + 3) q  22l+ 

SumGFL  


1
0

m
i ia  16 log(m) 6(m  1)l + (m  1)(3g + 26) q  2l+ 

SumFL  


1
0

m
i ia  4 log(m) + 15 (m + 5)l + m(2g + 8) q  2l++ log(m) 

ProdGFL  


1
0

m
i ia  5 log(m) (m  1)l + 6(m  1) q  22l+ 

ProdFL  


1
0

m
i ia   log(m) + 6 2l + 7(m  1) q  22l++m2 

PowAllFL  xi, i  [1, m] 5 log(m) (m  1)l + 5(m  1) q  22l+ 

 
Table 2 

Complexity of polynomial evaluation protocols for floating-point numbers with l-bit significand and g-bit exponent. 

Protocol Task Rounds Interactive operations (online) Modulus 

PolyEFL im
i i xa 0  18 log(m+1) (6m + log(m+1))l + m(3g + 39) + 4log(m+1)  q  22l++2 

PolySGFL im
i i xa 0  21 log(m) + 5 8ml + m(3g + 41) q  22l+ 

PolySFL im
i i xa 0  9 log(m) + 16 (2m + 4)l + m(2g + 16) q  22l++ log(m)  

PolySOFL im
i i xa 0  4 log(m) + 17 (m + 5)l +  m2 + m(2g + 18) q  22l++m 

PolyPFL )(1  m
i ix  log(m) + 22 (6m +2)l + m(3g + 36) q  22l++m2 
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Horner's algorithm is sequential [13], so it is not suitable for 
secure computation. We examine in the following several 
protocols that offer different tradeoffs.  

PolySGFL is a generic polynomial evaluation protocol 
that uses the generic arithmetic protocols discussed in 
Section 2: it computes xi = xi = v'i , p'i , s'i , z'i using 
PowAllFL and yi = aixi = v"i , p"i , s"i , z"i using MulFL, 

for i[1, m], then   m

i iyy
0

, with y0 = a0. This solution 

is simple, but expensive (Table 2). 
Estrin's parallel algorithm [13] computes m1 multiply-

and-add operations in log(m+1) iterations, structured as in 
Fig. 2, and an additional square operation per iteration. A 
protocol based on this algorithm, PolyEFL, is similar to 
SumGFL, but the iterations run a multiply-and-add protocol 
instead of AddFL [7]. However, its complexity is 
dominated by additions (it is slightly more complex than 
SumGFL) and the improvement is rather modest (Table 2).  

Alternatively, we can optimize PolySGFL as shown in 
Protocol P1, PolySFL. Step 1 computes the significands 
and exponents of xi = xi, i  [1, m] with Protocol P2, 
PowAllFLS. The protocols PowAllFLS and MulFLS are 
variants that skip the computation of s and z; they are 
computed in parallel in steps 2–4, in a single round. Steps 
5-7 compute yi = ai xi, i[1, m], without normalization: v''i 
= vi v'i / 2

l1 [2l1, 2l+14]  {0}; if z''i = 0 then p''i = p'i + 
pi + l  1 else p''i = 2g1. Steps 8 and 9 compute 

  m

i iyy
0

, using a slightly modified variant of SumFL, 

with input significands of l +1 bits and output significands 
of l bits.  

 P1: PolySFL([v], [p], [s], [z], {[vi], [pi], [si], [zi]} m
i 0 , l, g) 

1  {[v'i], [p'i]} m
i 1  PowAllFLS([v], [p], m, l, g);  

2  foreach i[1, m] do in parallel 
3     [s"i]  (i mod 2 = 1)? [si] : [s]  [si];  
4     [z"i]  [z]  [zi];  
5  foreach i[1, m] do in parallel 
6     [v"i]  Div2mPD([vi][v'i], 2l, l1);  
7     [p"i]  ([pi] + [p'i] + l1)(1 [z"i])  [z"i]2

g-1; 
8  ([v"0], [p"0], [s"0])  ([v0], [p0], [s0]);   
9  ([v'], [p'], [s'], [z'])  SumFL({[v"i], [p"i], [s"i]} m

i 0 , l+1, l, g);  

10 return ([v'], [p'], [s'], [z']);  

 
P2: PowAllFLS ([v], [p], m, l, g) 
1  ([v1], [p1])  ([v], [p]);     log(m);  
2  foreach i[1, ] do 
3       2i1;   (i  )?  : m  ;  
4     foreach j[1, ] do 
6        ([v+j], [p+j])  MulFLS([v], [p], [vj], [pj], l, g); 
7 return {[vi], [pi]} m

i 1 ;  

PolySFL achieves an important reduction of the round 
and communication complexity with respect to both 
PolySGFL and PolyEFL (Table 2). We can try to further 
simplify it by separating the computation of v''i and p''i: 

 Compute p"i, i[1, m]: if z''i = 0 then p''i = pi + ip 
+ l  1, else p''i = 2g1. Set p''0 = p0.  
 Compute in parallel p' = max({pi}) using MaxInt 
(for SumFL) and v'i, i[1, m], without normalization, 
using a simpler variant of PowAllFLS.  
 Finalize the polynomial evaluation as in PolySFL.  

For this variant, called PolySOFL, the tradeoff is more 
complicated (Table 2): it further reduces the number of 
rounds, but the maximum integer bitlength becomes 2l + m. 
Larger integers means larger modulus and higher 
communication complexity for the computation of the sum. 
For m  l, PolySOFL needs more interactive operations 
than PolySFL, with a larger modulus. This may cancel the 
benefits of the lower number of rounds.  

Assume now that the roots of P(x) are the real numbers 
i, i[1, m], and the application can precompute them (a 
similar approach works for complex roots). Our task can be 

reformulated as the evaluation of )()(
1 


m

i ixxP . 

This is shown in Protocol P3, PolyPFL [7]. By computing 
the factors in parallel and then using ProdFL, this variant 
offers the lowest round complexity (Table 2). However, the 
communication complexity, dominated by AddFL, is quite 
large, and ProdFL requires a larger modulus.  

P3: PolyPFL([v], [p], [s], [z], {[vi], [pi], [si], [zi]} m
i 0 , l, g) 

1  foreach i[1, m] do in parallel 
2    ([v'i], [p'i], [s'i], [z'i])   
          AddFL([v], [p], [s], [z], [vi], [pi], [si], [zi], l, g); 

3  ([v'], [p'], [s'], [z'])  ProdFL({[vi], [pi], [si], [zi]}
m
i 1 , l, g);  

4 return ([v'], [p'], [s'], [z']);   

4. EXPERIMENTAL RESULTS 

The protocols run a distributed, synchronized 
computation, with batches of interactive operations 
executed in parallel. Therefore, their running time depends 
on available processing and communication resources, as 
well as implementation optimizations aimed at using these 
resources more efficiently (especially for large batches).  

The complexity listed in Table 2 shows that PolySFL, 
PolySOFL, and PolyPFL are more efficient than PolySGFL 
and PolyEFL, so they should be much faster. However, the 
optimizations offer different tradeoffs between complexity 
metrics, so it is not obvious which variant is faster in 
different execution environments. Moreover, some 
optimizations move part of the workload from online 
interaction to local computation and precomputation. This 
approach is justified by several observations: 

 The protocols combine local computation and 
interaction over the Internet. The parties can allocate 
endpoint resources based on application requirements 
and budget constraints, but have limited control over 
network performance. As technology evolves, the cost 
of improving endpoint performance declines faster.  
 Precomputation (local and interactive operations) 
can be efficiently executed in parallel for all the sub-
tasks of a complex task, in a single interaction round.   

The effects of local computation and precomputation on 
the total running time are significant and have to be taken 
into account in the evaluation of the protocols, as well as in 
the design of their implementations. 

We studied the behavior of the polynomial evaluation 
protocols using our Java implementation of the secure 
computation framework. The aim of this implementation is 
to provide early feedback during protocol design, including 
correctness and accuracy tests, verification of complexity 
metrics (rounds and amount of data), and comparative 
analysis of protocol variants.  
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To facilitate protocol development and analysis, the 

implementation is single-threaded (except that data sending 
and receiving run in parallel on different threads).  

We evaluated PolySGFL, PolySFL, PolySOFL, and 
PolyPFL (abbreviated SG, S, SO, and P, respectively) for 3 
parties, polynomials of degree m {4, 8, 16, 32}, and 
floating-point numbers with l = 32 bits and g = 10 bits, 
encoded in a field with log(q)  = 128 bits. For degree m = 
32, PolySOFL and PolyPFL need log(q) = 160 bits.  

Table 3 shows the complexity of the implementations for 
the configuration parameters used in the tests: the number 
of online rounds and the amount of data sent by party Pi to 
party Pj during the online and precomputation phases. The 
number of rounds is slightly larger than the minimum 
allowed by protocol design due to implementation tradeoffs 
between modularity and round optimization. The minimum 
round complexity is specified between brackets; note also 
that the formulas in Table 2 are slightly simplified.  

Table 3 

Complexity of the implementation of polynomial evaluation protocols. 

  Online  Precomputation 

m Protocol Rounds Octets Octets 

4 PolySGFL 69   (63) 19998 41298 

 PolySFL 41   (38) 9449 22935 

 PolySOFL 33   (29) 8176 19662 

 PolyPFL 28   (24) 17108 32167 

8 PolySGFL 92   (86) 40587 84375 

 PolySFL 50   (47) 15889 40875 

 PolySOFL 38   (33) 13452 34600 

 PolyPFL 30   (25) 33286 63104 

16 PolySGFL 115   (105) 81783 170500 

 PolySFL 59   (56) 28698 76607 

 PolySOFL 43   (37) 25546 68685 

 PolyPFL 32   (26) 65658 124952 

32 PolySGFL 138   (126) 164143 342724 

 PolySFL 68   (65) 54227 147948 

 PolySOFL 48   (41) 69842 177384 

 PolyPFL 34   (27) 162999 290607 

 

Fig. 4 – Frequency distribution of the amount of data sent in a round. 

Figure 4 shows the frequency distribution of the amount 
of data sent in a round for a polynomial of degree m = 32. 
The amount of data varies between tens of octets and tens 
of thousands of octets (depending on the number of 
interactive primitives run in parallel and the size of the field 
elements). Observe that many rounds send less than a 
typical full packet payload (1460 octets) and only few 
rounds need tens of packets. Combined, the two abstract 
complexity metrics provide good performance predictions, 

but the workload per round varies a lot. Therefore, we need 
experimental analysis to understand the effects of different 
tradeoffs.  

The protocols' running time was measured in a testbed 
consisting of 3 computers with 3.6 GHz processors (a 
computer for each party) connected to an Ethernet local 
area network (LAN). The computers run the operating 
system Linux 18.04. Longer Internet delays were emulated 
using the Linux network emulation tool NetEm, which 
increased the one-way transfer delay by 10 milliseconds.  

Fig. 5 – Online and total running-time for 1 Gbps Ethernet LAN. 

Fig. 6 – Online and total running-time for simulated Internet. 
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Figure 5 shows the protocols' running time for parties 

connected to an Ethernet LAN with 1 Gbps data rate and 
0.35 milliseconds round-trip time. Figure 6 shows the 
running time for emulated Internet paths, with 100 Mbps 
end-to-end data rate and 20.8 milliseconds round-trip time. 
Solid lines show the online running time. Dotted lines show 
the total time, including the precomputation.  

The results show that all the optimized variants are 
clearly faster than PolySGFL, for both network types. 
Moreover, their performance gain grows significantly for 
slower networks. This shows that the optimizations are 
effective and confirms the predictions of the complexity 
metrics (combined effects of reducing both metrics).  

The running time and ranking of the optimized variants 
depend on network performance and polynomial degree:  

 In LAN tests (Fig. 5), the near-zero network delay 
strongly attenuates the benefits of low round 
complexity. The results suggest that PolySFL offers 
the best tradeoff, with good performance over a larger 
range of m.  
 For simulated Internet (Fig. 6), the results of the 
experiments emphasize the importance of lower round 
complexity: PolySOFL and PolyPFL are faster than 
PolySFL, even for larger m.  
 For m = 32, the running time of PolySOFL and 
PolyPFL grows faster due to the larger integer and 
modulus bitlength needed by ProdFL.  

The single-thread implementation does a poor job 
handling large batches of operations. This affects the online 
computation and, especially, the precomputation, for both 
network types. The inefficiency is better observed in LAN 
tests: most of the precomputation time was spent on local 
computation (the total load of the quad-core processor was 
about 20 % and the average data transfer rate was less than 
50 Mbps). The running time can be substantially reduced 
by optimizing batch processing, so that the implementation 
distributes the workload on multiple processor cores and 
transfers the data more efficiently on network paths with 
high bandwidth-delay product.  

5. CONCLUSIONS 

We examined a family of secure computation protocols 
that evaluate polynomials with secret floating-point inputs 
and output [7,8], to provide a comparative analysis of their 
construction, complexity, and running time.  

These protocols rely on the same secure computation 
model, based on Shamir secret sharing, and the same 
collection of building blocks, but offer different tradeoffs 
between round and communication complexity.  

We observed that the abstract complexity metrics offer 
useful performance predictions, but we need experimental 
analysis to understand the effects of the tradeoffs.  

The performance of secure computation protocols is 
usually reported for lab environments with near-zero 
network delay and highest data rate (e.g., 1 or 10 Gbps).  

However, these ideal conditions are not available (or 
affordable) in practical deployments of secure computation, 
when mutually distrustful organizations communicate via 
the Internet. Experiments in fast LANs provide useful 
information about implementation optimizations and the 
protocols' best possible running time. However, in this 
environment, the communication delay almost vanishes, so 

the experiments offer rather poor guidance for protocol 
optimizations, comparison of different solutions or 
tradeoffs, and practical protocol performance. 

For the polynomial evaluation protocols analyzed in this 
paper, LAN tests show a clear advantage of the optimized 
variants over PolySGFL, but attenuate the advantage of 
PolySOFL and PolyPFL, suggesting that PolySFL is better. 
Experiments with a more realistic communication delay 
show higher performance gains for the optimized variants 
and reverse their ranking, emphasizing the importance of 
round-efficient solutions.  

The optimized variants have their own advantages and 
disadvantages and choosing the most suitable variant 
depends on specific application requirements (e.g., 
PolySFL scales up better with m, PolyPFL requires the 
roots of the polynomial) and execution environment (e.g., 
PolyPFL is faster for Internet communications). On the 
other hand, optimizing the implementation of large batches 
is essential for improving the overall performance. 

Received on October 15, 2019 
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