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The proportionate normalized least-mean-square (PNLMS) algorithms were developed 
in the context of network echo cancellation. They outperform the normalized least-
mean-square (NLMS) algorithm only when the echo path is sparse. Unfortunately, real-
world network echo path may not be that sparse sometimes, while the acoustic echo 
paths are usually less sparse. The improved PNLMS (IPNLMS) algorithm is less 
sensitive to the sparseness character of the echo path. In order to enhance the 
performance of this algorithm we propose a variable step-size (VSS) version of it, 
providing a feasible solution for the conflicting requirements of fast convergence and 
low misadjustment. The simulation results prove that the proposed algorithm performs 
very well despite of the character of the echo path, being suitable for both network and 
acoustic echo cancellation. 

1. INTRODUCTION 

Echo cancellation is one of the most popular applications of adaptive filtering 
[1]. In both network and acoustic echo cancellation contexts the basic solution is to 
build a model of the impulse response of the echo path using an adaptive filter, 
which provides at its output a replica of the echo. The fundamental difficulties 
facing the design of an adaptive filter for echo cancellation include the long 
duration and time-varying nature of the echo path as well as the highly non-
stationarity character of the speech excitation signal. Even through various kinds of 
adaptive algorithms [2] are theoretically applicable for echo cancellation, in most 
cases a simple and robust algorithm outperforms more sophisticated solutions. 
Therefore, in many applications with limited precision and processing power, the 
normalized least-mean-square (NLMS) algorithm is preferred. 
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In order to enhance the performance of the NLMS algorithm in terms of its 
convergence rate and tracking, a proportionate NLMS (PNLMS) algorithm has 
been proposed in [3], in the context of the network echo problem. It takes 
advantage of the fact that the network echo path is sparse in nature, i.e., only a 
small portion of the coefficients is significantly different from zero (active 
coefficients). The idea behind PNLMS algorithm is to update each coefficient of 
the filter independently of the others by adjusting the adaptation step-size in 
proportion to the magnitude of the estimated filter coefficient. It redistributes the 
adaptation gains among all the coefficients and emphasizes the large ones in order 
to speed up their convergence, achieving a fast initial convergence rate. 
Unfortunately, after this initial phase, the convergence rate of the PNLMS 
algorithm slows down significantly, even becoming slower than NLMS. This is 
due to the fact that the equations used to calculate the step-size control factors are 
not based on any optimization criteria but are designed in an ad-hoc way. In order 
to deal with this problem, several versions of the PNLMS algorithm were proposed 
(see [4] and references therein). Nevertheless, they still assume the sparse character 
of the echo path impulse response, which could be proper for network echo path, 
but is far from true in the acoustic echo context, when the echo path may not be 
that sparse. Even in the case of a real-world network echo canceller, it is difficult to 
a priori know the sparseness “degree” of the echo path. Taking these considerations 
into account, an improved PNLMS (IPNLMS) algorithm was proposed in [5], 
based upon a rule that better exploits the “proportionate” idea. It behaves well even 
in the case when the echo path is nonsparse.  

In this paper we propose a combination between the IPNLMS algorithm and 
a variable step-size NLMS (VSS-NLMS) algorithm [6]. The VSS approach 
provides a simple and efficient solution to the conflicting requirements of fast 
convergence and low misadjustment needed by any adaptive system. In addition, 
due to the IPNLMS features, the proposed algorithm is less sensitive to the 
character of the echo path, being suitable for both network and acoustic echo 
cancellation applications. 

The remainder of the paper is organized as follows. Section 2 presents the 
backgrounds of PNLMS algorithms. The proposed variable step-size proportionate 
NLMS algorithm is derived in Section 3. Experimental results are shown in Section 
4. Finally, Section 5 concludes this work. 

2. BACKGROUNDS OF PNLMS ALGORITHMS 

Let us consider a single-talk echo canceller configuration, where we try to 
model an echo path with impulse response h = [h0, h1,…, hL–1]T using an adaptive 
filter, ĥ(n) = [ĥ0(n), ĥ1(n),…, ĥL–1(n)]T. Superscript T denotes transposition, L is the 
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length of the systems, and n is the time index. The desired signal for the adaptive 
filter is y(n) = hTx(n) + v(n), where x(n) = [x(n), x(n–1),…, x(n–L+1)]T is a real-
valued vector containing the L most recent samples of the input signal (i.e., far-
end) and v(n) is the system noise, assumed to be stationary, real-valued, and 
independent of the input signal x(n). 

The NLMS algorithm [2] can be resumed by the following equations: 

 ( ) ( ) ( ) ( )Tˆ 1e n y n n n= − −h x , (1) 

 ( ) ( ) ( ) ( )
( ) ( ) NLMS

T nn
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+−=
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where µ is the adaptation step (0 < µ < 2) and δNLMS is the regularization factor, i.e., 
a positive constant that prevents division by small numbers. 

The PNLMS algorithm [3] assigns an individual step-size to each filter 
coefficient, in such a way that a larger coefficient receives a larger increment, thus 
increasing the convergence rate of that coefficient. Consequently, the active 
coefficients are adjusted faster than non-active coefficients (i.e. small or zero 
coefficients), so that the PNLMS algorithm converges faster than NLMS for sparse 
impulse responses, when only a small percentage of coefficients is significant. The 
update equation (2) is modified as follows: 
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where G(n – 1) is a diagonal matrix that adjusts the step-sizes of the individual taps 
of the filter and δPNLMS = δNLMS/L is the regularization factor of the PNLMS 
algorithm. The diagonal elements of G(n), denoted by gl(n) with 0 ≤ l ≤ L – 1, are 
calculated using the following procedure:  
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Parameters ρ and δp are positive numbers with typical values ρ = 5/L and δp = 0.01. 
The constant ρ prevents the very small coefficients from stalling and the parameter 
δp regularizes the updating when all coefficients are zero at initialization. 

The main limitation of the PNLMS algorithm is that it assigns too much 
adaptation gains to large coefficients to speed up their convergence at the cost of 
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small coefficients. Accordingly, after an initial fast convergence phase, this 
algorithm slows down and become even slower than NLMS. A version of the 
PNLMS algorithm, called PNLMS++, was proposed in [7]. It alternates between 
the PNLMS and NLMS algorithms during adaptation based on the following 
simple rule. For odd-numbered time steps it computes G(n) as in PNLMS, while 
for even-numbered steps it uses G(n) = I, where I is the identity matrix. The 
PNLMS++ algorithm improves the performance of PNLMS after the initial 
convergence, making it to converge at least as fast as the NLMS algorithm. 
Nevertheless, it does not exploit the structure of the estimated impulse response. 
The algorithm is efficient for the extreme cases, when the impulse response is 
sparse or highly dispersive. Otherwise, when the impulse response is between 
sparse and dispersive, it performs almost like the NLMS algorithm because the rule 
used in PNLMS become less important. A similar type of algorithm, called 
composite PNLMS (CPNLMS), was developed in [8]. It switches from the 
PNLMS algorithm to the NLMS algorithm when slow convergence is detected. 
Nevertheless, its limitations are the same. 

The IPNLMS algorithm proposed in [5] uses a smother choice as compared 
to (4). In this case, the elements of G(n) will be computed as: 
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where –1 ≤ α ≤ 1, and ξ is a very small positive number to avoid division by zero, 
especially at the beginning of the adaptation where all the taps of the filter are 
initialized to zero. It can easily be checked that for α = –1 the IPNLMS and NLMS 
algorithms are equivalent, while for α close to 1 the IPNLMS algorithm behaves 
like PNLMS algorithm. In practice, good choices for the parameter α are 0 or –0.5. 
The regularization parameter of the IPNLMS algorithm should be taken as δIPNLMS= 
= δNLMS(1–α)/2L. The IPNLMS algorithm outperforms PNLMS for both sparse and 
nonsparse impulse responses. 

3. VARIABLE STEP-SIZE PNLMS ALGORITHM 

The VSS-NLMS adaptive algorithms provide an efficient solution to the 
conflicting requirements of fast convergence and low misadjustment needed by any 
adaptive system [9]. Recently, a nonparametric VSS-NLMS (NPVSS-NLMS) was 
proposed [6]. It is very simple and easy to control in real-world applications. As 
compared to other VSS-NLMS algorithms, this algorithm is derived with almost no 
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assumptions and it requires a minimum a priori parameters. The basic idea is to 
define the a posteriori error signal as 

 ( ) ( ) ( ) ( ) ( ) ( )( ) ( )T Tˆ ˆn y n n n n n v nε = − = − +h x x h h , for 0 ≤ l ≤ L – 1, (7) 

and to find the step-size parameter such that 

 ( ){ } 22
vnE σ=ε , (8) 

where E{•} denotes the mathematical expectation and ( ){ }nvEv
22 =σ  is the power 

of the system noise. Imposing (8) it results that [6] 
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where ( ){ }neEe
22 =σ  is the power of the error signal, δNPVSS = δNLMS is the 

regularization factor, and the small positive number ξ avoids division by zero. 
Therefore, the NPVSS-NLMS update is 

 ( ) ( ) ( ) ( ) ( )NPVSS
ˆ ˆ 1n n n n e n= − + µh h x . (10) 

The a priori parameter needed by the algorithm is the power of the system noise, 
2
vσ . In echo cancellation context it can be easily estimated during silences. The 

power of the error signal is estimated as follows: 

 ( ) ( ) ( ) ( )nenn ee
222 11 λ−+−λσ=σ , (11) 

where λ is an exponential window. Its value is chosen as λ = 1 – 1/KL, with K ≥ 2. 
The initial value is ( ) 002 =σe . Theoretically, it is clear that σe(n) ≥ σv, which 
implies that µNPVSS(n) ≥ 0. Nevertheless, the estimation from (11) could result in a 
lower magnitude than 2

vσ  (especially in the initial phase of the algorithm), which 
would make µNPVSS(n) negative. In this situation, the problem is solved by setting 
µNPVSS(n) = 0. 

In order to approach the goal of finding a variable step-size PNLMS 
algorithm suitable for any type of echo path impulse response, we will apply the 
idea of NPVSS-NLMS algorithm to the IPNLMS algorithm. Let us write the 
update relation of the IPNLMS algorithm as follows: 

 ( ) ( ) ( ) ( ) ( ) ( )nennnnn xGhh 11ˆˆ −µ+−= , (12) 
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where G(n) is the diagonal matrix with the elements given by (6). The issue is to 
find an expression for the step-size parameter µ(n) according to (8). Taking into 
account (1), (7), and (12) we may write 

 ( ) ( ) ( ) ( ) ( ) ( )T1 1n e n n n n n ε = −µ − x G x . (13) 

Squaring the previous equation, then taking the expectations at both sides, 
imposing (8) and following the same procedure as in derivation of NPVSS-NLMS 
algorithm [6] it will result that 
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where δNPVSS-IPNLMS = δIPNLMS is the regularization factor and ξ (small positive 
constant) avoids division by zero. The power of the error signal is estimated as in 
(11), and µNPVSS-IPNLMS(n) is set to 0 when σe(n) < σv. We will refer to this algorithm 
as the nonparametric VSS improved PNLMS (NPVSS-IPNLMS) algorithm. 
Looking at (14) it is obvious that before the algorithm converges, σe(n) is large 
compared to σv and consequently the adaptation step is close to 1, which provides 
the fastest convergence. When the algorithms starts to converge to the true 
solution, σe ≈ σv and µNPVSS-IPNLMS(n) ≈ 0. In fact, this is the desired behaviour for 
the adaptive algorithm, leading to both good convergence and low misadjustment. 

4. SIMULATION RESULTS 

For the experiments we have considered five impulse responses [Fig. 1(b)–
(f)] of length L = 512 (64 ms using an 8 kHz sampling rate), with different degrees 
of sparseness. The first one [Fig. 1(b)] and the third one [Fig. 1(d)] are network 
echo paths, according to ITU-T G.168 [10]; the second one [Fig. 1(c)] is a 
multireflection hybrid. In Fig. 1(e) is plotted a measured acoustic echo path (quasi-
sparse), while in Fig. 1(f) is depicted a dispersive impulse response. The input 
signal x(n) is a speech signal [Fig. 1(a)]. An independent white Gaussian noise 
signal v(n) is added to the output of the echo path, resulting the desired signal y(n). 
We consider a 25 dB signal-to-noise ratio (SNR) and we assume that the power of 
the system noise, 2

vσ , is known. In order to test the tracking capabilities of the 
adaptive algorithms, in all the simulations we consider an abrupt change of the 
echo path after 5 seconds, shifting the impulse response on the right by 12 samples. 
The measure of performance is the normalized misalignment (in dB), defined as 
20log10(||h – ĥ(n)||2/||h||2), where ||•||2 denotes the l2 norm. The choices for the 
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parameters of the analyzed adaptive algorithms are as follows. The NLMS and 
IPNLMS algorithms use an adaptation step µ = 0.2. For the IPNLMS algorithm we  
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Fig. 1 – a) Speech input signal; b) sparse network echo path according to ITU-T G.168;  

c) multireflection hybrid; d) network echo path (quasi-sparse) according to ITU-T G.168;  
e) measured acoustic echo path (quasi-sparse); f) dispersive impulse response. 

fix α = 0. In the case of NPVSS-NLMS and NPVSS-IPNLMS algorithms the 
exponential window λ uses K = 6. The regularization factor for NLMS and 
NPVSS-NLMS algorithms was set to 20 2

xσ , and for IPNLMS and NPVSS-
IPNLMS algorithms it is considered 20 2

xσ /2L (where 2
xσ  is the input signal 

variance). The results of the experiments are presented in Figs.  2–6. 
In the case of the very sparse impulse response from Fig. 1b, the NLMS 

algorithm is outperformed by all the other algorithms (Fig. 2). In terms of the 
convergence rate and tracking capability, the NPVSS-IPNLMS algorithm behaves 
similarly to the IPNLMS algorithm. The situation starts to be different when we 
deal with the multireflection hybrid from Fig. 1c. The NPVSS-IPNLMS algorithm 
provides the best performance (Fig. 3). Its superiority becomes more apparent for 
the echo paths from Figs. 1d and 1e, as it can be noticed from Figs. 4 and 5. 
Finally, when the impulse response is dispersive [as in Fig. 1f] the NPVSS based 
algorithms rule, while the NLMS and IPNLMS algorithms perform similarly 
(Fig. 6). Summarizing these results, the proposed NPVSS-IPNLMS algorithm 
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performs very well despite of the character of the echo path impulse response, 
being a suitable candidate for both network and acoustic echo cancellation systems. 

 
Fig. 2 – Misalignment of the algorithms for the 

impulse response from Fig. 1b. 
Fig. 3 – Misalignment of the algorithms for the 

impulse response from Fig. 1c. 

 
Fig. 4 – Misalignment of the algorithms for the 

impulse response from Fig. 1d. 
Fig. 5 – Misalignment of the algorithms for the 

impulse response from Fig. 1e. 

 
Fig. 6 – Misalignment of the algorithms for the impulse response from Fig. 1f. 
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5. CONCLUSIONS 

In echo cancellation context, most of the PNLMS algorithms are in general 
very sensitive to the character (i.e., sparse or nonsparse) of the echo path impulse 
response. Among these algorithms, the IPNLMS algorithm is less sensitive to this 
aspect. On the other hand, the NPVSS-NLMS algorithm offers a good solution to 
the conflicting requirement between fast convergence rate and low final 
misadjustment in a very simple manner. In this paper we have combined these two 
techniques, obtaining an NPVSS-IPNLMS algorithm. The simulation results show 
that this algorithm offers a very good performance for both sparse and non-sparse 
echo paths. Consequently, it is a very good candidate for real-world echo 
cancellers.  
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