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In this paper, distributed generation (DG) units are optimally allocated in a network containing unbalanced loads. To do this, 
parametric and cost functions have been formulated for this problem. A novel technique is used to solve the unbalanced load 
flow problem group search optimizer (GSO) algorithm is one of the new swarm intelligence algorithms which is modified in this 
paper and results are investigated. We simulated a real network of Iranian’s north-west power network and IEEE standard test 
system. Each objective function is configured for one these networks. For each network two allocating scenarios are proposed: 
one for the number of DGs and the other for the locations of DGs.  In case studies, the results from impoved GSO (iGSO) are 
compared with simple GSO and particle swarm optimization (PSO) algorithms results. 
 

1. INTRODUCTION 

There are many different definitions of DG. It can be 
defined as generating electric power in distribution network 
or in demand side [1] or using small size generation units to 
generate power in places near the consumers [2]. 
References are categorized to demonstrate one of the main 
features of our study which is the novel technique for 
solving the problem. Therefore, the references are divided 
into four sections: evolutionary techniques, swarm intelligence, 
heuristic approaches and fuzzy algorithms.  

In literatures, three methods are proposed mostly to solve 
the DG allocation problems. Evolutionary programming 
(EP) [3], immune algorithm [4] and genetic algorithm (GA) 
[5]. Swarm intelligence is based on the social behavior of 
swarms in decentralized self-organizing systems. Many 
examples of these swarms could be observed in the nature 
such as ant colony, bird flocks, animal herds, masses of 
bacteria and fish flocks. Artificial bee colony is used in [6], 
while Ref. [7] applies honey bee mating optimization 
(HBMO) algorithm to solve the problem and in [8] swarm 
particle optimization (PSO) algorithm solves the problem of 
DG optimal capacity and place allocation.  

Evolutionary techniques are used in [9–12] to solve this 
problem. Variety of methods have been used in these papers 
such as combination of algorithms [10], defining vulnerable 
buses from voltage stability point of view and finding DG 
places by dynamic programming search [11], sensibility test 
and heuristic curve-fitted technique [12] and straightforward 
algorithm. The fuzzy algorithm goes beyond “zero and one” 
values in traditional programming and opens new horizon 
in programming and computer world.  

References [13] use fuzzy algorithm to find optimum 
place and capacity for DGs. Authors in [14] applied mixed 
integer non-linear programming (MINLP) algorithm to 
overcome the problem.  

In this paper, best places of DGs in unbalanced radial 
distribution network are found by a novel optimization 
algorithm. The reminder of this paper is organized as follows: 

in Section 2, two objective functions are introduced for DG 
allocation in unbalanced distributed network. Proposed load 
flow for unbalanced loads is discussed in Section 3. Concept 
and structure of GSO, applied modifications and the 
methodology to solve the problem are presented in Section 4. 
Results of several scenarios and cases for test systems have 
been illustrated in Section 5. This work has been conclude 
in Section 6. 

2. FORMULATING THE PROBLEM 

2.1. COST OBJECTIVE FUNCTION 
 

In formulating the objective function, two challenges rise 
which both have cost fabric: minimizing the cost from power 
losses and the cost from capital investment and operating 
the DG units. Therefore, the objective function is introduced as 
follows: 

 
,

NB

loss i DG DGi 1p
COF SP K p K S

=
= ⋅ +∑ , (1) 

where SP is the length of period (it is 7840 hours for one 
year). Kp and PLoss are the costs caused by power losses and 
total power loss of the network. KDG and SDG represent the 
DGs installation and operation costs and the total apparent 
power respectively. NB is the number of buses. The constrains 
which should be all satisfied could be found in [15]. 

Therefore a new objective function should be defined as 
follows: 
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where, the indexes a and b are the values before and after 
allocation, respectively. VB is the voltage deviation. With 
this technique, the parameters of POF are normalized in an 
acceptable range and their effects on objective function 
would be directly of their variations not their real values. 
This objective function is a step forward than the cost 
objective function and it is more practical.  
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3. GROUP SEARCH OPTIMIZER ALGORITHM 

3.1. RUNNING THE GSO ALGORITHM [16] 
 

In GSO, each group contains three types of members; the 
members with best outcome for objective function are 
considered as leaders. Some of members are defined as 
explorer. If the best position delivers a better result 
compared to current position, then the particles moves to 
that position or stays at its current position and follows a 
new head angle. If a leader could not find a better region 
after few explorations, then it gets back to zero head angle.  

The iteration value is initially set to zero (K = 0) and all 
the members of random initial matrix Xi and head angle φi 
are initialized. The population of GSO is called a group and 
each particle in this group is a member. In a n-dimension 
search space, the ith member in kth iteration has the current 
position of Xi

k (Zi
k∈ Rn) and head angle of δi

k (δi
k=( δi1

k,…, 
δk

i(n-1))∈Rn-1). Exploration path of the ith member which is a 
unit vector (based on problem matrix dimensions) could be 
calculated by a polar to Cartesian transformation. 
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Each member in the group goes through following seven 
processes: 

Step I. Selecting the leader: finding the leader of group 
Xp which has the best possible result. 

Step II. Starting the search procedure: Leader is scanned 
at zero angle, then by applying following equations three 
points will be sampled in scanned area. In Kth, the position 
of leader is defined based on Xp

k=(xk
p1,…, xk

pn) vector. This 
vector explores three neighboring points to find a better 
possible position. First (XF), second (XR) and third (XL) 
leaders scan points in front, right and left, respectively: 
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where r1 is a random number from normal distribution with 
mean value and standard deviation equals to 1. r2 is a 
random number between 0 and 1 with normal distribution. 
θmax is the maximum-pursuit angle and lmax  is the maximum 
length: 
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In (9), Uj and Lj are upper and lower boundaries of search 
space. If the best point has a better reference regarding to 
current position, the point moves toward the leader. If not, 
it stays at the current point and finds its path by (10). If the 
position of one of three points becomes better than the 
current position of leader, then leader moves to that point 

and its angle could be found by (9).  

 max2
1 α+δ=δ + rKK , (10) 

where, αmax is the maximum-pursuit angle. 
Step III. If aforementioned situation does not happen 

then leader stays at its current position. If the leader fails to 
find a better position in ath iteration, it scans opposite leader 
applying (11): 

 KaK δ=δ + . (11) 
Step IV. Running the exploration (search): remaining 

80 % members are initialized randomly to start the search. 
Step V. Running distribution: remaining members are 

scattered randomly, to do this, based on (10), a head angle 
should be generated for random movement, and lI which is 
a random distance obtained by (12) so the particle moves to 
new position using (13). 
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Step VI. Fitness calculation: calculating fitness for 
current member f(Zi). 

Step VII. These seven steps are performed on all the 
particles. The termination criterion (number of iterations) is 
then checked, if it is satisfied the algorithm stops. 

3.2. MODIFIED GSO ALGORITHM 
 

In this version, initial matrix (Par) with the dimension of 
population and number of variables is randomly generated. 
For each person (row) an objective function is introduced 
and they organized descending and consequently Par is 
organized accordingly. Persons (code strings) are generated 
with (14)– (16): 
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in which the elements of D matrix are calculated by 
equations (6)–(8). 

Then new parameters are generated as follows: 
 }:)],,1(1[:),,1({Min FF ZParParX ′−=′′  (17)  

 }:)],,1(1[:),,1({Min RR ZParParX ′−=′′  (18) 

 }:)],,1(1[:),,1(Min{ LL ZParParX ′−=′′ . (19) 

Objective function is calculated based ZF, ZR and ZL, each 
one of these or the Par(1,:) that delivers better objective 
function is selected as the code of next level. This string 
goes to next level unchanged. Other strings are calculated 
and substituted as: 
 :)),(:),1((2 PParParrX P −=′ , (20) 

 }:)],,(1[:),1({Min PP ZPParParX ′−−=′′ , (21) 

 P
K
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In these equations, Par(1,: ) and Par(P,:) are the best and 
non-best codes. The angles are calculated as follows: If 
Par(1,:) is lower than XF, XR and XL then the angle is 
obtained from equation (14) in which α = π/2(N+1) and N 
is the number of variables. After ath iteration, if Par(1,:) 
could not reach the optimum position and the angle of  
Eq.(15), for non-optimal codes, δ should be calculated by 
Eq.(23): 

 1:),(:),( 2 ++δ=δ NrPP . (23) 

3.3. SOLVING PROBLEM 
 

First we should feed the input data. There are two types 
of data in our problem: first, network data, including base 
voltage (20 kV) and power, resistance and inductance as 
well as the diagram of the network and next, data needed 
for GSO algorithm: bus voltage magnitude and total power 
loss before running the optimization process on the network, 
initial population generated in initial matrix based on the 
nature of the problem and grid characteristics. When adding 
a DG to the network, a particle adds to the network and the 
proposed algorithm should be implemented to find the 
optimal DG allocation. Next, DG installation cost is 
calculated for each particle of generation and objective 
function. The particles of matrix are introduced and organized 
based on the objective function. When the optimization 
process starts, the proposed algorithm runs to find better 
particles from initial population and next, load flow should 
be performed for each particle to evaluate power losses. 
Objective function is then calculated based on the load flow 
results. Substituting old particles with new results from the 
algorithm operators, the objective function is reorganized 
and best results are selected for it. This procedure goes on 
until the criteria are met. 

4. CASE STUDY 

The case studies are performed on two networks; a 25 
bus standard test system (Fig.1) and a real 37 (Fig.2) bus 
system. In these figures, white and black ground show 
reactive and actives powers, respectively. For each 
network, two scenarios are considered: Number of DGs and 
allocating the place of DG installation. Showing the 

advantages of proposed iGSO in solving the problem and 
investigating the effects of more DGs on parameters of 
objective function are the main purpose of first and second 
scenarios, respectively. In each scenario the following 
parameters are surveyed: power loss, objective function, 
capacity and location of installed DGs and grid voltage 
profile. Energy loss cost is 0.6 $/kWh and DG units 
installation cost is 400,000 $/MW [17]. Unit of each quantity 
is considered as follows: power loss (kW), voltage (per 
unit), cost function ($), parametric function (without unit), 
active capacity (kW) and reactive capacity (kvar). 

4.1. PARAMETRIC OBJECTIVE FUNCTION 
IN 25 BUS NETWORK 

4.1.1. Optimal number of DGS 
 

Single-line diagram and corresponding information of 
this network are presented in [18] and Fig. 1. In Table (1), 
DG allocation results from proposed iGSO, simple GSO 
and PSO algorithms from first scenario are presented to 
show the advantages of the iGSO algorithm regarding to 
two other algorithms. 

Table 1 

Optimal DG allocation in IEEE 25 bus test system 

Size  Minimum voltage (pu) POF 
ReactiveActive Phase c Phase b Phase a 

Power 
loss  

Tech-
nique 

2.0000- - 0.931182 0.928444 0.928431150.1225Without 
1.4416742 793 0.949494 0.949690 0.94996491.0915PSO 
1.3564351 519 0.969511 0.969703 0.96996579.1369GSO 
1.2205262 381 0.969579 0.969748 0.96996958.7825iGSO 

From the data in this table we could conclude that proposed 
algorithm delivers better results and this is achieved by 
lower DG capacity. In comparison with required active 
capacity, lower reactive capacity resulted by iGSO is more 
significant when comparing with two other algorithms. The 
simple GSO is still better than PSO. Capacity and location 
of installed DGs are shown in Fig. 2.  

Considering Fig. 1, we could observe that iGSO resulted 
in 2 and 6 units less DG units compared two algorithms, 
respectively, but it is also capable of delivering the best possible 
results by allocating these units on most sensitive place. 
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Fig. 1 –DG Placement on 25-bus system. 
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4.1.2. Optimal number of DGS 

In second scenario, to investigate the effects of DGs 
quantity on objective function and power loss, DG number 
varies from 1 to 25 and results from iGSO algorithm 
optimization are indicated in Fig. 3. Regarding to different 
scales of power loss and objective function, they are 
divided by corresponding value before DG allocations. On 
the other hand, the voltage variations are very small, so 
we neglect voltage deviations in Fig. 2.  

 

Fig. 2 – Optimal values variations in 25 bus. 

Regarding Fig. 2, two curves behave almost the same. 
Obviously, after 10 DGs, the curve descending slows 
down, and it shapes a linear line more or less. This is 
more obvious if we compare the trend in first 5 DGs and 
last 5 DGs.  

4.2. COST OBJECTIVE FUNCTION 
IN 37 BUS REAL SYSTEM 

The results in Table 2 are presented to show the 
capability of proposed iGSO algorithm in solving the DG 
allocation problem in unbalanced grid as well as the real 
power grid and the results are compared to GSO and PSO 
algorithms. 

From Table 2 we could conclude that the iGSO algorithm 
is able to significantly reduce the overall grid costs by 
decreasing the power loss with even less DG units. Also, 

we could see that the voltage minimum is not much improved 
due to long abnormal structure of studied network. Optimal 
capacity and place of DG units allocated in first scenario of 
the real system is represented in Fig. 3. 

In this figure, we could observe that the number of DG 
units resulted by iGSO, GSO and PSO are 8, 9 and 13, 
respectively and obviously the iGSO algorithm delivers 
lower required capacity. Also, in the iGSO solution the DG 
units are installed at end busses which have more sensitivity. 

4.2.1. Optimal number of DG units 

Like 25 bus test system, second scenario is applied to the 
37 bus real system and results are presented in Fig. 4. It can 
be seen in this figure that power loss variation and decrease 
is much more intense compared to objective function. 
Actually the behaviors of objective function and power loss 
are opposite. 
 

Table 2 

Optimal DG allocation in 37 bus real system 

Size Minimum voltage (pu) COF 
Reactive Active Phase c Phase b Phase a 

Power loss 
(kW) 

Technique 

911718 - - 0.922313 0.969858 0.927323 173.4624 Without DG 
897867 481 825 0.935739 0.976798 0.940655 93.1497 PSO 
844435 523 820 0.949502 0.949696 0.949964 86.6433 GSO 
767634 392 675 0.949564 0.949731 0.949970 62.1134 iGSO 
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Fig. 3 – DG placement in 37 bus real system. 
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Fig. 4 – Optimal values variations in 37 bus. 

5. CONCLUSION  

In this paper, we proposed iGSO algorithm for DG 
optimal allocation in a grid with unbalanced loads pursuing 
two different objective functions. By comparing iGSO 
algorithm with GSO and PSO, the advantage of the iGSO 
algorithm could be proven. Regarding to table 1 and 2 we 
could see the results from iGSO is 18.11 % and 11.13 % 
better than PSO and GSO in parametric objective function, 
respectively. For cost objective function these reductions 
are 16.97 % and 10.00 %.  

The proposed algorithm delivers better results with fewer 
DG units and lower capacity. Fewer DG units are highly 
demanded by grid designer due to high operation costs and 
capital investments. From Figs. 2 and 4 it can be seen that 
better place allocation of DG units is the other important 
aspect of the iGSO algorithm compared to other algorithms. 
This algorithm placed the DG units in most sensitive and 
strategic busses of the network, and hence the parameters of 
the grid improved. Fewer number of DG units has lots of 
financial, technical and environmental advantages. 
Increasing the number of DGs from the optimum number, 
lowers the rate of improvement in objective function to 
installed capacity.  

In other words, the number of DGs is different from the 
capacity of DGs. Therefore in DG unit allocation, the 
number and the capacity of DGs should be studied 
separately. In number-based allocating optimization, if the 
number of DG units is predefined compared to the case that 
it should be found, the results from the former is better.  

In both objective function the power loss shows a 
descending behavior (Figs. 2 and 4), although this trend is 
more linear in cost objective function, while it has some 
fluctuations in parametric objective function. From Figs. 2 
and 4 it can be seen that the two objective functions behave 
contrary and that is due to the parameters and formulations 
in these functions. Terms in parametric objective function 
are normalized and higher number of DG units lowers the 
voltage deviation and power loss. On the other hand, in cost 
objective function, the costs would increase with the 
increase in the number and capacity of DG units. 
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