
 Rev. Roum. Sci. Techn.– Électrotechnique et Énergétique
 Vol. 65, 3–4, pp. 259–263, Bucarest, 2020

“Politehnica” University of Bucharest, Falculty of Automatic Control and Computer Science; anca.ionita@upb.ro

ARCHITECTURE FOR MONITORING RISK SITUATIONS IN A
UNIVERSITY ENVIRONMENT

FLORIN LĂCĂTUŞU, ANCA-DANIELA IONIȚĂ

Key words: Cloud Computing, Risk situations, Building monitoring systems.

The use of Cloud technologies has become frequent in our daily lives. Our study was focused on the comparison of two solutions
for the implementation of a monitoring system for a university building. Both of them collect data from sensors and a mobile
app, but one is based on a virtual machine deployed on a local server and the other is hosted in a public Cloud. The latter is
developed as a Cloud-native application implemented with Linux containers. The two solutions were analyzed for scenarios of
building monitoring, suited for identifying risk situations.

1. INTRODUCTION
The implementations using Cloud technologies have

become more frequent because of their underlying
advantages and prevalence. This growing trend is determined
by the multitude of available offerings from different Cloud
providers. Another factor of influence is represented by the
flexibility offered by Cloud Computing. Therefore, the
concerns of hardware choices, costs, installation, and
maintenance do not exist in this kind of environment. The
advantages of Cloud were exploited in multiple industries,
from personal use cases to complex processing, solving
elaborate problems that require a significant amount of
computing resources. For example, [1] proposes a Cloud use
case that can be applied in the medical field, to rehabilitate
neurological patients.

The biggest problem that had to be solved in the past was
the cost of acquiring such hardware for the respective need.
In the Cloud, every resource is taxed for the time it is used.
Thus, the use of high-performance equipment is accessible
to a larger group of people.

Another important task in the context of building
monitoring systems is the implementation of a sensor
network, with the scope of collecting various environmental
parameters. Sensor networks are used in many domains. A
use case where the sensor networks are used in the medical
field, to detect tumors is presented in [2].

In our study, we conducted a comparison of two
implementations of a university building monitoring
system, using a local server approach and a Cloud-native
implementation respectively. For both approaches, the
result was a building monitoring system with the facility to
provide alerts based on data received from sensors and user
reports. The provided services can be used by individuals
who have access to this architecture, to monitor the
building, and to be alerted in case of emergency. The data
gathered from sensors are also essential because they can
resemble events that can characterize emergencies. The
next logical step for this kind of structure was the
implementation of a monitoring software application and a
user reporting system. The goal of the monitoring
application was to display the information received from
sensors and the user reports, in the form of a dashboard.
The data received is displayed in real-time.

The next section of the paper presents some related work.
Then, Section 3 presents two implementations of the system
for monitoring risk situations in a university environment.
In Section 4 there is a comparison between the use case of

building monitoring using a local server and the one based
on the deployment in IBM Cloud, using containers. The
purpose is to investigate what kind of solution is best suited
to implement such a monitoring and alerting system.

2. RELATED WORK
The environment analysis using sensors is often present

in the scientific literature. Our work is related to the
approach presented in [3], related to the monitoring of a
laboratory environment using a publish-subscribe
deployment model; based on different parameters, alarms
are triggered when a certain threshold is achieved. The
implementation of a building monitoring system was also
presented in [7], where the scope was to create an optimal
environment for its occupants and to reduce its energy
footprint.

Concerning our architecture based on Cloud Computing,
a relevant study was conducted in [4], regarding the
performance of containers vs. virtual machines. It gives a
comparison between the boot times of containers and those
of virtual machines that are virtualized using the KVM
(Kernel-based Virtual Machine) hypervisor. The results
confirmed the theory of containers, i.e. the fact that the
containers boot faster than the virtual machines. They also
realized a comparison of the calculation speed of both
technologies, and the containers proved to be well faster for
the computations tested using the Python language.

The underlying advantages of using Cloud Computing
were also presented by [5], for various deployment options,
i.e., public, private, and hybrid, as well as for the most
used models, such as IaaS (Infrastructure as a Service),
PaaS (Platform as a Service) and SaaS (Software as a
Service).

Kubernetes characteristics of high availability were
discussed in detail in [6]. The study was conducted using
multiple applications, to measure the healing capacity of
Kubernetes in different situations.

3. SYSTEM FOR MONITORING UNIVERSITY RISKS
The system presented in this article consists of: a sensor

network that collects data, monitoring, and notification
software, an application that collects reports from its users.
The main component of the sensor network is the node. It
hosts both the data acquisition and the messaging software,
as well as the hardware connection to the sensors. On one
node it is possible to connect several types of sensors that
capture different environmental data. Also, the software

260 Monitoring risk situations in an university environment 2

processes raw data from sensors and sends them forward.
The system users can also connect to a node independently
and thus, get the data captured by it. The monitoring system
provides information about the university building
environmental parameters; if one of these parameters comes
out of a set threshold, it generates alerts. The reporting
application, called UniCris, was previously described in [8].
Its scope is to collect user reports in case of an emergency.
The reports are sent over the Internet or as SMS. The
monitoring system collects reports from users and compares
them with the data that originated from sensors.

Local virtual machine implementation
The monitoring and reporting application is composed of

multiple parts (Fig.1). First, some sensors collect the
environmental data from each university room where they
are installed.

Fig.1 – Local system architecture.

The data gathered from sensors are sent to a server and
stored in a database. Another part is represented by the
monitoring application that is hosted on the same local
server. This application gathers data from the database and
uses an algorithm to decide if there is an alert or not. The
alerting system is composed of an Android application that
is used by students and teachers from the building to report
events. These reports are sent to the backend application on
the server, and an algorithm checks if the data from users
correspond with the data gathered from sensors.

If the algorithm decides that there is an alert, a
notification is sent to the administrator’s mobile phone. As
in the case of data that come from sensors, the user reports
are saved on a database. This feature is related to another
component of the system – the monitoring application,
which is practically a web dashboard, written in Angular; it
offers statistics and analyses of reports from the database.

For the local implementation, we chose a Linux virtual
machine; we used CentOS as the version of Linux for this
machine. For testing purposes, we allocated 4 GB of RAM
and 2 cores for this server.

Raspberry Pi was chosen as a sensor node because it has a
Linux OS installed on it and it supports a further extension if
multiple nodes must be attached to this network. Because it is

dependent on the wireless network to send data, it needs a
constant power source. This type of node can be easily swapped
with an ESP8266 that drives the NodeMCU development
board, an alternative recommended if the power source is
important because this microcontroller could run on batteries
for months, compared with the Raspberry, which consumes
more power.

On the data acquisition side, we used BMP 180 as
pressure, temperature, barometer, and altitude sensor, as
well as an MQ02 gas sensor that senses different types of
gases, such as Methane, Butane, LPG, and Smoke. If the
detected value is greater than 300 ppm, smoke is detected.

On the Raspberry node, a Python script was used to
collect data from sensors. The data was written on the
database hosted on the local server. Only reports were the
temperature is greater than 50 degrees Celsius, or smoke is
greater than 300 ppm are recorded. These values were
simulated for testing purposes. The date and time of the
respective events were saved in the database. The data are
then compared with the information sent by users for the
same time intervals, to decide whether a notification is sent
or not.

The image from Fig. 2 presents a sequence diagram for
this system, represented in UML (Unified Modeling
Language). The user makes a report; the report is sent to the
database; the Raspberry node realizes a continuous data
acquisition from the sensor. The data are sent to the server.
If the temperature is bigger than 50 degrees Celsius, or
smoke is greater than 300 ppm, the data is saved into the
database. The backend makes requests to the database every
minute. It uses an algorithm to compare the reported data
with the data acquired by the Raspberry. If the time and the
location match, it sends a notification to a responsible
person that a possible risk event is in progress.

4. CLOUD-BASED IMPLEMENTATION
This section presents the implementation of the alerting

system in a public cloud environment. This may have
several advantages, like the ability to make it accessible to
multiple users, who are connected to different networks.
IBM Cloud offers multiple services to implement different
types of applications. In the case of this monitoring and
alerting application, the service used is Kubernetes – a
container orchestration system [9]. IBM Cloud was selected
because it offered a free trial for the Kubernetes Cluster.
Other Cloud providers were also investigated, such as AWS
and Microsoft Azure, but IBM Cloud was the most
financially convenient for our work.

Thus, the goal for this research was to migrate the system
that was presented in the previous section to a Cloud
environment. Earlier, we implemented the system on a
Linux virtual machine. In that case, the necessary tools
were installed in a local environment. In this second
implementation, the free Kubernetes service offered a
worker node to host the containers. The components of the
application practically remain the same as in the previous
version; the only difference is that the applications run in
separate containers.

This approach simplifies the whole process because the
application is not hosted on a local virtual machine and all
the components are isolated. Also, because it is hosted in
the Cloud, it can be accessed at any time. Another
advantage is offered by the property of Kubernetes
container orchestrator, to keep the application online, even

3 Florin Lăcătușu, Anca-Daniela Ioniţă 261

if something happens and a crash occurs; Kubernetes will
keep the number of replicas online. The pod is the smallest

unit in Kubernetes. One pod may contain one or more
containers.

Containers that reside in the same pod are usually those

that depend on each other to function. The Kubernetes
service offered by IBM Cloud in the free version allows the
creation of a cluster with a single wor kerWhenn a service
is created, a cluster of one or more nodes is deployed. Thus,
the configuration has a master node that deals with the
administration of the pods on the nodes. The nodes are
practically virtual machines where pods are found. Like any
Cloud provider, IBM offers a service that guarantees its
availability over 99% of time. There before, the service will
be available as needed. Besides, the ability of Kubernetes to
manage nodes and maintain the available pods is a plus for
the high availability of the system [10].

Fig.3 - Cloud system architecture.

Figure 3 presents our application architecture, using the
IBM Cloud Kubernetes service. Thus, the user posts an alert
that is added directly to the database found on a pod, in the
cluster. The development boards collect data from the
sensors in every room where they are installed. Based on the
collected data, alerts are sent directly from them to the
database located on a pod. The data is sent when a parameter
received from the sensor exceeds a certain threshold. To
write directly to the database, we use a helper pod that

contains PHP and Python scripts that insert data into the
database.

If one compares this architecture with the local one,
presented previously, the main difference between them is
the implementation of the system using a Kubernetes cluster
in IBM Cloud, as opposed to the implementation of the
system on a local server. This approach takes the data
processing away from the university building where the
event happens.

Fig. 4 presents the pods running on the Kubernetes cluster
worker node, i.e.:

• DB – the measurements database for sensors and user
reports;

• DB Admin - the web administrator for the database;
• Utility Scripts - for scripts that send data to de database;

the scripts from this pod are called by the application that
runs on the development board and the Android smartphone;

• NodeJS Backend – a pod containing a NodeJS container;
it runs the comparison algorithm and sends notifications to
the Administrator; it also saves the notifications in the
database and offers an API for the frontend, to see reported
data;

• Angular Front-end - running on a pod containing a web
server (Nginx).

This solution is more effective than installing the same
tools on a virtual machine, as presented in the previous
section. There is isolation between different applications
running in the container and one does not need to install
these tools anymore, because one uses images containing
the desired software. Another important aspect is virtual
machine management, which in the case of containers is
resolved by the IBM Cloud support team. The purchase and
the costs of the hardware running the machine are inexistent
because everything is stored in the Cloud.

5. COMPARISON AND DISCUSSION
The virtual machine approach has the advantage of being

locally deployed, as well as the sensor nodes (Fig. 5). Thus,
data gathering can be done over a local network. This aspect
has advantages such as the fact that it does not depend on a
public Internet connection, and the data are sent on a local
network. As a disadvantage, a disaster that occurs on a

Fig. 2 – System flow (Sequence diagram).

262 Monitoring risk situations in an university environment 4

building that also stores the report can raise problems if the
electrical grid is affected and the system is automatically shut
down. In this case, the reporting application (UniCris) can be
used, because it sends the reports via SMS and Internet
(Fig. 6).

Thus, this kind of report also depends on the operation of
the local network where the disaster occurs. From the
performance point of view, the application is directly
influenced by the hardware that runs the backend system.
So, a performant system would require the acquisition of
expensive hardware that would add unnecessary up-front
costs, in a world that offers the possibility to “rent” the
hardware for its use period. The situation where this
approach would have an upper edge compared with the
Cloud deployment is when the Internet connection is down
and the data from sensors cannot be sent to the server. In
this case, half of the system functionality would be down.

The biggest advantage of the Cloud system is the
separation of the processing infrastructure from the actual
building (Fig. 7). Hence, in the case the electrical grid of
the building is down, the user reports will continue to work
as usual, because the system is not dependent on the local
infrastructure. The only problem that arises when this kind
of issue happens is that the reports from sensors are not
available anymore, since they use the local network
connection of the building. Moreover, the system in the
Cloud has an availability rate higher than 99 %, so one is
assured by the Cloud provider that the system is up.

From a performance point of view, in Cloud, as well as
for the local deployment, a more performant system would
be pricier. The difference, when one works in Cloud, is that
there are no up-front costs; one only pays for as long as the
system is used. In IBM Cloud, the Kubernetes service has
an hourly payment system. Another advantage of the Cloud
system is that the administration of the virtual machines
that sustain the cluster is done by the Cloud provider.

Fig. 4 – Kubernetes cluster pods.

The Cloud system is suited to handle the notifications
and building monitoring in case of an emergency because it
is not dependent on the local infrastructure. In this case, the
users can still make reports that are sent to the
administrator. If the Internet connection is down, the only
system that is affected is represented by the sensor network,
which will not be able to send alerts. Therefore, in case of
an emergency where the electrical system of the building or
Internet connection are affected, the user reports will not be
influenced by the downtime of the system (Fig. 8).

The Cloud system is suited to handle the notifications
and building monitoring in case of an emergency because it

is not dependent on the local infrastructure. In this case, the
users can still make reports that are sent to the
administrator.

Fig. 5 – Local system.

Fig. 6 – Local system scenario.

Fig. 7 – Cloud system.

5 Florin Lăcătușu, Anca-Daniela Ioniţă 263

Fig. 8 – Cloud system scenario.

If the Internet connection is down, the only system that is
affected is represented by the sensor network, which will
not be able to send alerts. Therefore, in case of an
emergency where the electrical system of the building or
Internet connection are affected, the user reports will not be
influenced by the downtime of the system (Fig. 8).

6. CONCLUSIONS
The article presented and analyzed two implementations of

a university building monitoring system. The underlying
functionalities are the same: data acquisition from the
environment, and user reports. The difference is represented
by the location where data are processed, and the technologies
used to implement the system. Using a public Cloud and a
Platform as a service (PaaS) implementation is much simpler
when compared with a local server approach because the user
does not have the OS administration problems that usually
appear when using virtual machines, such as security patches,
OS updates, etc. Moreover, for testing purposes, it is easier to
have all the data stored in Cloud than resident on a virtual
machine. The installation of the Kubernetes Cluster and all its
administrative tasks is done automatically.

Another advantage is the high availability of 99% +
application readiness that is provided by the Cloud itself. If
the application sits in a private environment, this thing must
be assured by the user. In the case of a university building

monitoring application, the use of these Cloud technologies
offers the possibility of high availability of the system. The
only thing that must be assured to keep this property is a
strong connection from the reporting tools to the Cloud.

The disadvantage of the Cloud approach is the
dependence on the Internet connection. Thus, all the system
functions are available only when the connection between
the university building and public Cloud is established. As
a solution for this inconvenience, one can use Direct Link
and create a private connection between the public Cloud
datacenters and the university building, using the Internet
provider infrastructure. Furthermore, for redundancy
purposes, multiple Internet providers can be used.

In conclusion, the use of Cloud technologies to monitor a
university building is beneficial for providing the necessary
high availability of the system and is cheaper than
implementing a system that requires the acquisition of
computing hardware, provided that one should assure a strong
connection between the Cloud and the local system.

Received on March 23, 2020

REFERENCES
1. D. Cârstoiu, V.E. Oltean, S.M. Nica, G. Spiridon, A cloud-based

architecture proposal for rehabilitation of aphasia patients, Rev.
Roum. Sci. Techn. – Électrotechn. et Énerg., 62, 3, pp. 332–337
(2017).

2. G.M. Vasilescu, I. Bârsan, G. Kacso, M.E. Marin, M. Maricaru, L.N.
Demeter, Two devices equipped with temperature sensors used to
detect and locate incipient breast tumors, Rev. Room. Sci.
Technol. – Électrotechn. et Énerg., 63, 4, pp. 441–445 (2018).

3. R.N. Pietraru, L.G. Zegrea, A.D. Ioniță, Publish-subscribe deployment
alternatives for scenarios related to university laboratory safety,
The XIth International Symposium on Advanced Topics in
Electrical Engineering, March 28-30, Bucharest, Romania, 2019.

4. B.B. Rad, H.J. Bhatti, M. Ahmadi, An Introduction to Docker and
analysis of its performance. IJCSNS International Journal of
Computer Science and Network Security. 173, 8 (2017).

5. O.A. Isaac, M. Ananya, FAgonyno, R. Goddy-World, Cloud computing
architecture: a critical analysis., IEEE Proceedings of the 2018
18th International Conference on Computational Science and Its
Applications, Melbourne, Australia, 2 – 5 July 2018, pp 1-7.

6. L.A. Vaughan, M.A. Saied, M. Toeroe, F. Khendek, Kubernetes as an
availability manager for microservice applications,arXiv.org,
Cornell University, 2019.

7. T. Stavropoulos, A. Tsioliaridou, G. Koutitas, D. Vrakas, I. Vlahavas.
System architecture for a smart university building. ICANN '10
Intelligent Environmental Monitoring, Modelling and
Management Systems for better QoL Workshop, Thessaloniki,
Greece, 2010, pp. 477-482.

8. A. Olteanu, F. Lăcătușu, M. Lăcătușu, I. Crăciun, A.D. Ioniță. Mobile
application for crisis situations in a university campus, The
International Scientific Conference eLearning and Software for
Education, Buchares, Romania, 2018, pp. 280-287.

9. **
* Kubernetes definition and features – https://kubernetes.io/, accessed

2019.
10. **

* Kubernetes Networking, https://kubernetes.io/docs/concepts/services-
networking/, accessed 2019

