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The cross-section of prefabricated metallic beams is constant along the path they move. 
This feature allows solving analytically the temperature field problem by applying the 
method of spatial eigenfunctions series decomposition in the cross-section. The second 
order differential equations of the series’ terms can be solved analytically. A Picard-
Banach iterative technique with a very fast convergence rate is proposed for solving the 
eigenvalues problem. The method has a greater efficiency in terms of accuracy and 
execution times than numerical methods, such that based on the finite element method. 
It can be shown that when the speed of moving beam is sufficiently small the 
distribution of the field in the cross-section is almost uniform. For this case a simple 
and fast procedure which allows the computation of the average temperature variation 
along the beam is proposed. 

1. INTRODUCTION 

Metallic materials can be processed with more ease when they are heated. For 
an increased productivity the heating of the pre-fabricated beams is done with 
electromagnetic fields in continuous flow (Fig. 1). The beam enters with velocity v, 
in a sinusoidal current excited coil that induces eddy currents in the beam which, in 
turn, heat the beam (Fig.1). The mathematical model of the beam heating involves 
the solution of an eddy current problem and a temperature field problem. In a 
previous paper [1], which can be considered the first part of this study, an efficient 
analytical method for solving the electromagnetic field is presented. The method is 
based on the expansion of the solution in a series of spatial eigenfunctions. It was 
proposed by Mihai Vasiliu [2–4] and, in comparison with numerical methods, has 
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the great advantage of a more accurate solution when the electromagnetic field 
depth of penetration is small. The formulas for calculating the specific losses and 
global cross-section losses have been established in [1]. 

                                                
                                                    The coil 

  The moving beam to be heated and processed                                   v 

 
Fig. 1 – Continuous flow heating device. 

The Mihai Vasiliu method is also used in this paper to solve the 3D moving 
beams heating problem. The solution of the temperature field is expanded in a 
series of spatial eigenfunctions of the cross section. The series’ coefficients are 
functions of the z coordinate defined on the beam’s axis. These coefficients are 
obtained by analytically solving a set of differential equations of the second degree. 
Unlike [1], computation of the eigenvalues leads to finding solutions to a set of 
transcendental equations. In this paper a method is proposed in which these 
equations are changed into contractive operators whose fixed points are rapidly 
determined through the Picard-Banach iterative procedure. 

The small depth of penetration leads to a strongly non-uniform distribution of 
the specific losses. For this reason the discretization mesh used in the numerical 
methods (such as the finite element method in 3D) is strongly non-uniform with 
unwanted consequences for the size and conditioning of the system’s matrix. The 
proposed method has a greater accuracy and a smaller execution time than those of 
numerical methods and is not influenced by the non-uniform distribution of the 
specific losses. The method can be easily applied for the computation of the 3D 
temperature field of moving beams. 

A one-dimensional model is also proposed for the case in which the temperature 
field is almost uniform in the cross-section, the temperature of the beam changes only 
in the displacement direction. The great advantage of this model is that presents 
small execution times, it does not require obtaining the eigenvalues and eigen-
functions, and it can be applied to any shape of the cross section. The model is 
recommended for the design of an optimal constructive solution for various beams. 

2. THE EQUATION OF THE TEMPERATURE FIELD 

In the coil’s frame of reference the equation of the temperature field is 

 p
t

c s =
θ

+θ∇λ⋅∇−
d

d , (1) 
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where θ  is the temperature of the beam (we assume the exterior temperature is 
equal to zero); λ  is the thermal conductivity; c is the volumetric heat capacity; p 
are the specific losses (produced by the eddy currents); 
d θ θ θ θθ
d
s V
t t t z

∂ ∂ ∂
= + ⋅∇ = +
∂ ∂ ∂

V  is the substantial derivative of the temperature. Due 

to the fact that the device performs the heating in continuous flow, the temperature 

is constant in the frame of reference of the device and 
t∂
θ∂ = 0. For homogenous 

media (λ = const., c = const.), equation (1) can be written in the form 

 
λ

=
∂
θ∂

+θΔ−
p

z
q , (2) 

where 
λ

=
cVq . 

On the contour of each cross-section we have the mixed boundary condition 

 0=τθ+
∂
θ∂

λ
n

, (3) 

where τ  is the heat transfer coefficient. The temperature at the entry of the beam in 
the excitation coil is the exterior one 

 0=θ , for z=0.  (4) 
When exiting the coil the beam’s temperature is at its maximum 

 
z∂
θ∂ =0, for  z = l.  (5) 

3. EXPANDING THE SOLUTION OF THE TEMPERATURE FIELD 
PROBLEM IN A SERIES OF SPATIAL EIGENFUNCTIONS 

In the cross-section xoyΩ  the Δ operator’s component is ⎟⎟
⎠

⎞
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⎝
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∂
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With the boundary conditions from (3) this operator is positive and symmetric. It 
defines a set of eigenvalues 2

kη  and orthonormal eigenfunctions kΨ  which verify 
the equation 

 kkk Ψη=ΔΨ− 2 . (6) 

It is worth mentioning that the eigenfunctions kΨ  are different from the kΦ  
functions from the eddy currents problems [1] because the boundary conditions are 
different. The temperature of the beam is written as 
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By replacing (7) in equation (2) we have 
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By multiplying the relation with kΨ  and integrating on xoyΩ , we obtain the 

differential equation of the kZ  component 
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where ∫
Ω

Ψ
λ

=
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Spp kk d1  is obtained through numerical integration, by adopting a 

discretization network adapted to the distribution of the losses. The solution of the 
equation (9), that satisfies the boundary conditions (4) and (5), is: 
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where 2/' qq =  and 22" ' kk qq η+= . The solution of the temperature field problem 
is obtained by replacing (10) in (7). 

4. NUMERICAL EXAMPLE 

We consider an aluminum beam ba 22 × = mm8020×  (Fig. 2), having 

S/m107,37 6⋅=σ  and 1=μr . The excitation coil has N windings, a length  
l = 800 mm, and a current of rms value I and frequency f = 10 kHz [1].  

                        y 
                               
 
                2b 
                                 
                  O                      x   
                 The beam 
                        2a 
                                   Air  

Fig. 2 – The rectangular beam. 
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A depth of penetration of 0.81969 mm is thus obtained. In the sinusoidal 
regime the specific losses are given [1] by  

 
2 2 2

= 1 j 1 jk k
k k k k

k k
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l
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ωμσ ωμσ
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where 2
kλ  are the eigenvalues and kΦ  are the eigenfunctions with null values 

on the boundary, verifying the equation kkk Φλ=ΔΦ− 2  and dk k S
Ω

Φ = Φ∫ . 

For the rectangular cross-section we have [1]: 222
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4.1. THE EIGENVALUES AND THE EIGENFUNCTIONS IN THE 
TEMPERATURE PROBLEM  

To solve the equation of eigenvalues and eigenvectors (6) we write 

 p= ( , ) ( ) ( )k x y X x Y yΨ =  (12) 

and by dividing by )()( yYxX  we obtain 2
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and 222 β+α=ηk . Because the function kΨ  is even in relation with the x and y 
variables we limit ourselves to the first quadrant of the cross-section. The equations 
(13) have the solutions 

 )cos()( xAxX α=  and )cos()( yByY β= . (14) 

The boundary condition (3) is fulfilled if 0
d
d

=τ+λ X
x
X  and 0

d
d
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y
Y  

from which we get 
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with the solutions mα  and nβ . Therefore  

 2
kη = 2

),( nmη = 22
nm β+α , (16) 
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4.2. SOLVING EQUATIONS (15) 

For a rapid solution of equations 
τ
αλ

=α )(ctg a  (15), a fixed point technique 

based on the Picard-Banach [5] sequence is used. Equation (15) has a solution akα  
of the argument for each interval ( )π, π+π / 2k k , Nk ∈ . We denote π−α= kaz kk , 
so 

 ( ) azk kk /+π=α . (18) 

It follows that the equation ( ) )/()(ctg χ+π= azkz kk  has a solution 
)2/,0( π∈kz  for each Nk∈ . We replace this equation with 

 ( )[ ] 0)/(arcctg)( =χ+π−= azkzzf kkkk . (19) 

The function kf  is Lipchitzian and monotonically increasing. Indeed, 
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obtained with the Picard-Banach sequence: )
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from (18) we obtain the eigenvalues kα .  
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The convergence can be significantly increased if we use overrelaxation in 
the Picard-Banach sequence 
 )1( +n

kz = )(n
kz )( )(n

kzfsη− , (20) 
with s > 1. If we stop the Picard-Banach iterations at iteration n, the error when 
compared with the exact solution can be evaluated with 

 k
n

k zz −)( < )1()(

1
−−

δ−
δ n

k
n

k
k

k zz . (21) 

The contraction factor value decreases with the order of the eigenvalue. For 
k > 3 at most two iterations are sufficient to obtain an almost zero error ( 2010−< ). 
For large values of the argument (at k > 3), we can approximate zz /1)(arcctg =  

and an approximate solution of equation (19) is 
)(211 π++

=
kd

dz
k

k
k , for k > 0, 

where )/(2 πχ= kadk , with which the Picard-Banach sequence can be initialized. 
For k = 0 the Picard-Banach sequence can be initialized with the value χ= az0 . 

Table 1 

 The eigenvalues on the Ox axis 

k Eigenvalue Number of iterations Error Overrelaxation 
0 1.5 6 2.06E-06 2000.0 
1 314.2 1 8.55E-09 1.9 
2 628.3 1 1.06E-09 1.9 
3 942.5 1 3.20E-10 1.9 

In Table 1, in the case of the Ox axis, the eigenvalues are presented along 
with the number of iterations required obtaining the error in relation with the exact 
solution given by equation (16) and the overrelaxation factors. 

4.3. THE TEMPERATURE FIELD 

The thermal parameters are =λ 237 , τ =5 2oC/mW/ , 3o4 C/mJ/10243 ⋅=c . 
The excitation coil has an ampere-turn  kA1620080 =⋅=⋅ IN  and a speed of 
v = 2 mm/s. The temperature field is determined with (7). Series (7) has a very fast 
convergence rate. Only a few terms are required in order to obtain a very good 
accuracy. This is shown in Table 2 where the er errors are indicated at coordinate 

z = 0.4 m computed with the formula 
2

( , ) / ( , )
2

(0,0) (0,0)

η
er

/ η
m n m np

p
= . On the horizontal the 
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m index is modified and on the vertical the n index is modified. With the exception 
of the m = 1 and n = 1 indices the errors are almost the same at other z coordinates. 

Table 2 

The error er at  z = 0.4 m 

n\m 1 2 3 4 5 6 7 8 
1 5.0E-02 4.2E-05 9.7E-06 3.9E-06 2.0E-06 1.2E-06 7.3E-07 4.8E-07 
2 1.5E-04 2.2E-06 5.7E-07 2.4E-07 1.2E-07 6.6E-08 3.9E-08 2.3E-08 
3 3.8E-05 1.9E-06 5.4E-07 2.3E-07 1.2E-07 6.5E-08 3.9E-08 2.3E-08 
4 1.7E-05 1.5E-06 5.1E-07 2.3E-07 1.2E-07 6.5E-08 3.9E-08 2.4E-08 
5 9.4E-06 1.2E-06 4.6E-07 2.2E-07 1.1E-07 6.4E-08 3.8E-08 2.3E-08 
6 6.0E-06 9.2E-07 4.1E-07 2.0E-07 1.1E-07 6.2E-08 3.7E-08 2.3E-08 
7 4.1E-06 7.2E-07 3.6E-07 1.9E-07 1.0E-07 6.1E-08 3.7E-08 2.3E-08 
8 2.9E-06 5.7E-07 3.2E-07 1.8E-07 1.0E-07 5.9E-08 3.6E-08 2.2E-08 

In Figs. 3, 4 the isotherms are drawn at different z coordinates for only a 
quarter of the cross-section. 

   

z = 0.2 m z = 0.8 m z = 0.2 m z = 0.8 m 

Fig. 3 – Isotherms for 16 kA ampere-turn and a 
speed of 2 mm/s.  

Fig. 4 – Isotherms for 32 kA ampere-turn and a 
speed of 8 mm/s. 
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If the ampere-turn grows by a factor of r, the losses grow by approximately 
2r  times and we can also increase the speed by 2r  times. Obviously the 

temperatures will grow more than double given the losses through the lateral part 
of the beam are smaller due to the shorter time of the beam inside the coil. It is, 
however, to be expected that the distribution of the temperature will loose its 
uniformity. In Fig. 4 the isotherms for a double ampere-turn kA32=NI  and a four 
times bigger speed v = 8 mm/s are drawn. 

5. ONE-DIMENSIONAL TEMPERATURE MODEL 

From Figs. 3 and 4 we can see that in a cross-section of the beam the 
temperature is getting close to an uniform distribution. An extremely large 
reduction of the execution time can be accomplished if we assume the temperature 
depends only on the z coordinate and we obtain the equation 

 PL
z

cVS
z

S =θτ+
θ

+
θ

λ−
d
d

d
d

2

2

, (22) 

where (considering the first quadrant) abS =  is the area of the cross-section, 
baL += is the length of the portion of the boundary of the cross section through 

which the transfer of heat to the exterior is made and P is the global losses per unit 

of length computed in [1]:  p= ∑
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~1 . The boundary condition at 

the entry of the beam inside the coil and at the exit are those given by (4) and (5). 

 

a) NI = 16 kA, v = 2 mm/s,                                     b) NI = 32 kA, v = 8 mm/s 
Fig. 5 – The temperature along the beam. 
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Fig. 6 – The final temperature of the beam in relation with the speed for an amper-turn of 32 kA. 

We denote 
λ

=
cVQ  and 

S
L
λ
τ

=Γ 2  and equation (22) can be written as 
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d  with a similar form with equation (9) of the components 

of the series expansion and with the same boundary conditions. It has the solution 
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where 2/' QQ =  and 22'" Γ+= QQ . In Fig. 5 the temperature along the beam is 
presented for an ampere-turn of kA16=NI  and a speed v = 2 mm/s and an 
ampere-turn of kA32=NI  and a speed v = 8 mm/s. 

Determining the speed for a given ampere-turn in order to obtain a required 
temperature at the exit of the beam for the coil can be accomplished with the help 
of Fig. 6. 

5. CONCLUSIONS 

The solution for the temperature field distribution inside the moving beam 
has an analytical form as an expression of a series of spatial eigenfunctions of the 
cross section xoyΩ . The series is rapidly convergent. In order to obtain the 
eigenvalues a transcendental equation is efficiently solved, by using a very fast 
fixed point technique. Once calculated they are valid for any point in the analyzed 
domain. To increase even further the computational speed, the matrices coefficients 

)(zZk  from series (7) can be computed for the required z coordinate and can be 
multiplied with the eigenfunctions kΨ , regardless of the (x, y) coordinates. The 
sizes of these matrices are small resulting from the small number of terms that must 
be summed in (7). 
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The paper also proposes a simplified procedure for determining the 
temperatures along the beam that can be used when the temperature field has small 
changes in the xoyΩ  plane. The procedure is very fast by not requiring determining 
the eigenvalues and eigenfunctions. The temperature in beams with 
non-rectangular cross-sections, where the calculation of the eigenfunctions and 
eigenvalues is particularly difficult, can be easily determined. The procedure 
allows a fast analysis of the beam’s temperature in relation with the input 
parameters being, thus, an efficient instrument for optimizing these parameters. 
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