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COMPUTATION METHODS FOR SPACE HARMONIC EFFECTS  
ON  SINGLE-PHASE INDUCTION MOTOR PERFORMANCE 
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Single-phase and two-phase induction machines are widely used in commercial 
applications. The developed methods for the analysis of the single-phase induction 
motor, i.e. forward-backward field, symmetrical components and cross-field methods, 
can be adapted for modelling the MMF harmonic effects. This paper presents a review 
on all these methods that demonstrates the equivalence between models and shows how 
the equivalent circuit elements can be interchanged from one method to another.  

1. INTRODUCTION 

Single-phase and two-phase induction machines are widely used in 
commercial applications due to their cost and high reliability. Significant 
performance deterioration of the systems driven by single or two-phase induction 
machines may appear due to winding harmonics that create parasitic torques at all 
speeds, typically causing “dips” in the torque/speed characteristic. Core and rotor 
copper losses are also increased due to the MMF harmonic effects and thus the 
motor efficiency is diminished. Both odd and even harmonic effects have been 
considered using the double revolving field theory [1–2]. The other developed 
methods for the analysis of the single-phase induction motor, i.e. symmetrical 
components and cross-field methods, can be adapted for modelling the MMF 
harmonic effects. The following assumptions are made: 1. The stator windings are 
built with half-cycle symmetry and consequently only the odd MMF harmonics are 
considered; 2. All the MMF harmonics experience the same level of saturation; 3. 
The rotor current is treated as a current sheet that varies as a true harmonic function 
with respect to the position around the air-gap; 4. The effect of skewing is ignored. 
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Fig. 1 –  Equivalent circuit of the single-phase induction motor connections. 

Fig. 1 shows a general equivalent circuit of the single-phase induction motor 
connections. Experimental torque/speed curves were obtained for two capacitor-
run motors, with various main and auxiliary winding distributions. Comparisons 
between the theoretical and experimental curves show reasonable agreement, with 
sufficient correlation to provide important guidance on the overall effect of the 
winding harmonics. The speed of calculation is important because of the large 
number of possible cases requiring analysis and interpretation, justifying the 
development of an analytical method in preference to a finite-element approach 
that may be more time consuming. 

2. THEORY 

2.1. FORWARD AND BACKWARD REVOLVING FIELD METHOD 

The forward- and backward-revolving field method is generally attributed to 
Morrill [1]. The approach described here is essentially a summary of the lucid 
account given by Veinott [2], with the addition of the iron loss WFe that is 
represented in the equivalent circuit by Rc. The variables are expressed as phasors. 
Fig. 2 shows the revolving field method applied to a single-phase induction motor 
when capacitive impedance is in series with the auxiliary winding. The permeance 
variation caused by the slot openings is neglected. The space harmonics are of odd 
order and rotate at subsynchronous speeds in both the forward and reverse 
directions. The impedances presented to the positive-sequence and negative-
sequence harmonic MMF distributions are approximated using the following 
relations: 
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The magnetization reactance and the rotor leakage reactance for the n-th 
harmonic order MMF may be approximated as a function of the reactances 
corresponding to the fundamental spatial MMF. So, we can use the approximation 
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Fig. 2 – Equivalent circuit of 1-phase induction motor with capacitor connection using the forward 
and backward field theory. 

The bar resistance and the end-ring resistance are computed taking into 
account the skin-effect and the temperature effect [16]. The effective turns ratio 
that determines the n-th MMF harmonic interaction is: 
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The harmonic field of order n = (4k−1) will determine a rotation in the 
opposite sense with the fundamental, while the harmonic field of order n = (4k+1) 
rotates in the same sense with the fundamental flux wave. The space MMF 
harmonic effects are more important at low speed and will diminish the starting 
torque. The resultant torque is computed as: 
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where the torque produced by the fundamental field is given by: 
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The following relations give the torque produced by the n-th harmonic field:  
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                  n = 4k + 1,   n = 4k – 1. 

(6) 

2.2. SYMMETRICAL COMPONENTS METHOD 

Fig. 3.a shows the symmetrical-component model where only the 
fundamental and the 3rd MMF harmonic are illustrated. The model for the 
fundamental MMF was originally described by Veinott [2] and Suhr [3].  

By association with the forward-backward field method, the positive 
sequence corresponds to the forward rotating field and the negative sequence to the 
backward rotating field. With fixed values for the iron-loss resistors, the currents 
can be calculated explicitly, and in this case the computational burden is not greatly 
increased by including them; but there remains the problem of knowing what 
values to use. The approach described here relies on two elements not available to 
the original authors: one is the extremely fast solution by computer, and the other is 
the ability to estimate the iron loss independently from the flux-density waveforms. 
Indeed it is possible to re-evaluate the iron loss recursively from the flux-density 
waveforms as the solution proceeds, causing Rcf and Rcb to vary. However, in the 
split-phase induction motor there are so many other departures from the ideal 
model, that this enhancement may make little difference to the overall accuracy. 
For example, stray loss, inter-bar currents, winding harmonics, and various 
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manufacturing imperfections may have a combined effect that is greater than the 
iron loss, which is often relatively small in these motors. The values of the resistors 
Rcf and Rcb cannot be measured directly, but only roughly correlated with a series of 
calculations over a range of operating conditions. For this reason it is an advantage 
to have more than one analytical model, and in the next section a third method is 
described – the cross-field model – which includes the iron-loss resistors 
corresponding to the main and auxiliary winding circuits. The impedances 
presented to the both sequences harmonic MMF distributions are approximated 
using the following relations: 
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The magnetization reactance and the rotor leakage reactance for the n-th 
harmonic order MMF may be approximated with similar relations to forward and 
backward field method (2). The coefficient αn is computed as: 
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The coefficient αn is introduced to take into account the fact that n-th MMF 
harmonic interaction has different effective turns ratio which is an. The 
transformation from the circuit in Fig. 2 (physical rotating fields) and the circuit 
from Fig. 3.a (fictitious symmetrical components fields) can be done if the forward 
and backward impedances from the auxiliary winding are expressed using the same 
effective turns ratio a. Thus, it would seem necessary to multiply the n-th harmonic 
impedances with the ratio (an/a)2. On the other hand this multiplication would 
change the harmonic impedance value that is used in the main winding circuit. A 
possible solution is to use an averaging factor αn, which will apply to both forward 
and backward components of the n-th space harmonic impedance. A comparison 
between equivalent circuits in Figs. 2 and 3a shows that if a = an then the rotating 
forward and backward fields method and symmetrical components method will 
predict identical results as αn = 1 for this particular case. If kwn or kwnaux are smaller 
than 0.02, it is practically to set αn = 0. The resultant torque is computed as: 
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s
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ω
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2
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where the relations give the torque produced by the n-th harmonic field: 
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Note the sign change when including different n-th harmonics order. The 
harmonics 3, 7, 11, 4k – 1, determine a reversed rotation sense as compared to the 
fundamental field, while harmonics 5, 9, 12, 4k + 1 determine the same rotation 
sense with the fundamental field. 

 

 

a b 

Fig. 3a – Equivalent circuit of 1-phase induction motor with capacitor connection using the 
symmetrical components theory; b – Equivalent circuit of 1-phase induction motor with capacitor 

connection using the cross-field theory. 
 

2.3. CROSS-FIELD METHOD 

Fig. 3.b shows the cross-field model where only the fundamental and the 3rd 
MMF harmonic are illustrated. The model for the fundamental MMF was 
originally described by Puchstein and Lloyd [4], and Trickey [5]. It assumes a 
stationary reference frame fixed to the stator and modern theory describes this 
method as two-axis or dq axis models [12, 15].  

This method has a better physical correlation with the actual motor. The main 
and auxiliary winding circuits are uncoupled and modelled individually, interacting 
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with the entire rotor MMF harmonics. The equivalent iron-loss resistances, rCm and 
rCa are modelled as in [17] with the assumption: 

 .2
CmCa rar =  (11) 

The per unit speed term that appears in the induced EMFs for the n-th MMF 
harmonic circuit is: 
 ( )[ ] ( ).1111 snsnSn −=−+−=  (12) 

The resultant torque is computed as: 
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where the torque produced by the n-th harmonic field is: 
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where an is computed with (3) and Icm, Ica represent the currents associated with the 
core loss in the main winding and auxiliary winding respectively. 

The circuit equations shown in Fig. 3.b may be expressed as a matrix system 
[15], thus any harmonic may be included. The cross-field and forward-backward 
field methods will produce identical results if the core losses are neglected. 

This result is in line with the idea that various locations of the equivalent 
core-loss resistance in the equivalent circuit do not change the prediction of the 
overall motor performance. The symmetrical components method is employing an 
average of the n-th harmonic impedance in the stator windings circuit, and thus will 
predict identical results with the other two methods only for the case when the 
stator windings have the same distribution or when the MMF harmonics of the 
main winding may be neglected. 

4. COMPARISON WITH EXPERIMENTAL DATA 

All the described methods are validated on three capacitor-run motors with 
parameters detailed in Table 1. Tested machines were driven according to the 
standard IEEE 114, as motors using a hysteresis brake and a DC load motor. 
During the measurements the stator winding and cage rotor temperature are 
maintained at 40 oC. In Table 1 the winding factors are presented. The equivalent 
circuit elements from Figs. 2, 3 are estimated using analytical and numerical 
methods. 

Figs. 4, 5, 6 and 7 show the experimental and computed data.  
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One should note the for motor 1 while the forward-backward field and the 
cross-field methods predict almost similar results in agreement with the test data, 
the symmetrical component method underestimates the torque values between 
starting and break-down points. The measurements and computations performed 
for the case from (Fig. 5), show that the symmetrical components method 
overestimates the 3rd harmonic effect, due to the averaging factor αn from (8).  

This factor would allow a correct model for the space harmonic effects only 
if the stator windings have a similar distribution or if the main winding has a low 
harmonics content. For rated load points, all methods lead to results that give good 
agreement with test data. Motor 2 is an example where the main winding has a very 
low 3rd harmonic content while the auxiliary winding contains very high 3rd, 5th and 
7th MMF harmonics. 

Table 1 

  Winding factors for the tested motors and their parameters up to 7th order 
 

Winding factor Motor1 Motor2 

kw1main 0.8815 0.831 
kw3main 0.1944 0.0098 
kw5main 0.2540 0.1721 
kw7main 0.0442 0.1321 
kw1aux 0.9262 0.9577 
kw3aux 0.4385 0.6533 
kw5aux 0.1021 0.2053 
kw7aux 0.2544 0.1576  

 
 
 
 
 
 

Motor   # 1 #2 
Voltage [V] 220 220 

Frequency [Hz] 60 50 
Poles 4 2 

Capacitor [µF] 40 25 
Rated power [W] 1.100 1.000 
Rated current [A] 7.1 6.3 

Turn ratio a 1.097 0.955 
 

Two remark are valid for this case: a) when the main winding’s 3rd harmonic 
from is very low, the auxiliary winding’s 3rd harmonic is insignificant for the 
torque vs speed curve; b) when the values of the main and auxiliary winding 
factors are similar (kwn / kwnaux about 0.8 ... 1.2) the symmetrical component method 
predicts similar results with the other two methods even for different windings’ 
distributions. 
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In connection with the forward-backward field method, a very low winding 
factor for the n-th harmonic of the main winding eliminates the corresponding 
harmonic torque regardless of the auxiliary space distribution.  

This is an important feature that allows the implementation of an auxiliary 
winding that maximises the starting capabilities and allows a uniform slot fill 
factor. 
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Fig. 4 – Torque vs. speed for motor 1 and 2 – energized both stator windings (Table 1). 
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Fig. 5 – Torque vs. speed for motor 1 and 2 – energized main winding only (Table 1). 
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Fig. 6 – Current vs. speed for motor 1and 2 – energized both stator windings (Table 1). 
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Fig. 7 – Efficiency vs. speed for motor 1 and 2 – energized both stator windings (Table 1). 

5. CONCLUSIONS 

The effects of MMF harmonics in single-phase induction motors can be 
analytically modelled using any of the three classical methods. The equivalence of 
the methods is demonstrated in this paper. The forward-backward field and cross 
field methods may be used for any stator winding distribution and configuration, 
while the symmetrical components method should be avoided when both windings 
have an important but different space harmonics content. The core-loss modelling 
has a minor effect on the accurate prediction of the overall motor performance 
when equivalent resistances are placed within the equivalent circuits. 

Received on 28 November, 2008 
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