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The electric field has been computed using the hybrid technique FEM-BEM, so the 
motion modifies only the boundary conditions on the surface of the wooden piece; 
FEM mesh inside the piece as well as some of the elements of the matrix associated to 
the inner nodes remain unchanged. The electric field problem is coupled with the 
thermal field problem because the complex permittivity depends on the temperature and 
the specific losses are influenced by the electric field strength. Besides that, the 
moisturized wood to be dried is moving and the water vaporization has impact on the 
thermal field. Our paper proposes a method for solving the electric field problem 
coupled with thermal diffusion and mass problems, taking into consideration the 
movement of the wood object exposed to the drying process. 

1. INTRODUCTION 

The electric field inside the drying oven is produced by a set of electrodes 
powered by high voltages (8…20 kV) and frequencies of: 13.56, 27.12 and 40.66 
MHz. The heating of the objects by radio frequency electromagnetic field produces 
a volume distribution of the specific losses that leads to a uniformly enough level 
of distributed thermal field inside the moisturized piece to be dried. The 
wavelength (> 10 m) is greater than the oven dimensions; there are not 
ferromagnetic parts, thus the derivative of magnetic flux density from Faraday’s 
law can be neglected. A quasi-electrostatic problem has to be solved, where the 
electric permittivity is a complex quantity that depends on the temperature, 
therefore the electric field problem is coupled with the thermal diffusion one. The 
specific losses in the thermal diffusion equation depend on the electric field 
strength and the complex permittivity. The motion of the wet wood changes the 
geometrical structure needed for solving the electric field problem. Therefore the 
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hybrid technique FEM-BEM is recommended for the computation of the electric 
field. This method presents the main advantages of the FEM [1–3]. The solution of 
the electric field problem coupled with the thermal and the mass ones for a 2D 
structure was presented in [4]. 

Our paper offers an analyzing procedure of the drying process for 
three-dimensional pieces of wood [5]. The integral equation on the 3D boundaries 
of the piece and of the electrodes defines the rigidity matrix that is the boundary 
condition for the electric field problem analyzed with FEM inside the piece.  

The mathematical model of water vaporization is particularly complicated if 
we consider the diffusion of the water and the vapors within the volume of the 
wood related to its fibrous irregular structure. Moreover, this structure depends on 
the piece to be dried and it cannot be generally known. Therefore, we may assume 
that there is only surface vaporization, and then the diffusion inside the wooden 
piece is very rapidly done. Besides, the vaporization inside the piece must be 
avoided since it may lead to unwanted cracks. Evaporation on the wood surface 
reduces the temperature and it is part of the boundary condition of the thermal field 
problem. The speed of the wooden piece inside the oven has to be determined, such 
that the imposed moisture level to be reached at the exit from the oven.  

2. THE INTEGRAL EQUATION OF THE ELECTRICAL POTENTIAL 
ON THE AIR BOUNDARY 

 
Fig.1 – Calculating domain. 

On the boundary 0Ω∂  of the air domain 0Ω , consisting of the electrodes 
surfaces 1>Ω∂ kk ,  and the boundary Ω∂  of the wood, the following integral 
equation for the electric potential and its normal derivative is valid [6]:  
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where: θ  is the solid angle under which a small vicinity of the domain 0Ω  is seen 
from the observation point P, n is the inner normal unit vector, at the integration 
point Q and QSd is the surface element in this point. If the observation point P is 

placed on kΩ∂ , then the left side of equation (1) becomes kVπ4 =0.  

3. BEM DISCRETIZATION 

We approximate the border 0Ω∂  with a polyhedral surface with triangular 

facets and admit that on each facet the derivative 
n
V
∂
∂  is constant, while V has a 

linear variation defined by the values of the potential from the nodes that border the 
triangle. Using nodal elements jϕ , the potential on the dielectric  boundary Ω∂  is 
written as 
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where N is the number of nodes on Ω∂ boundary. 
If we integrate equation (1) to the triangles on the surface of the dielectric, 

we obtain 
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where: iΔ , e
jΔ  are triangles on Ω∂  and respectively eΩ∂ , )( jiχ =1 if node j 

borders triangle iΔ  and )( jiχ  = 0. Otherwise, iS  is the area of the triangle iΔ , bN  
and nN  are, respectively, the number of triangles and nodes on Ω∂ , while e

bN  is 
the number of triangles on eΩ∂ . When we integrate equation (1) on the facets of 
the electrodes boundary, we obtain 
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where the elements of matrices esA , esB , eeB  and eC are determined by: 
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Observations. i) If the wood moves, then only the values of the matrix 
coupling the electrodes and the wood seB  and the matrix of free terms eC  change. 

ii) Matrices ssB  and eeB  are symmetric. 
iii) seB = T

esB , where T indicates the transpose. It is sufficient to determine 
only one of the two matrices. Calculation effort is substantially reduced in the case 
of structures with moving bodies, where these matrices are determined at each time 
step. 

We multiply equation (7) with 1−
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where 

 eseesesss ABBAD 1−−=  , (13) 

 eseesesss BBBBE 1−−=  , (14) 

 eeeses CBBF 1−−=  . (15) 

Equations (12) and (3) form a system of equations in which the unknown 

elements are the potentials of nodes V and the values of the derivates 
n
V
∂
∂  on the 

triangular facets of the dielectric.  

4. ELECTRIC FIELD PROBLEM INSIDE THE WOOD 

The solution of the sinusoidal electric field problem in the wood domain Ω  
(Fig.1) is obtained by using phasor representation. The complex permittivity of the 
wood is: ε ′′−ε′=ε j . Since we can neglect the derivative of magnetic flux density 
in the Faraday law, the electric potential satisfies equation  

 0=∇ε⋅∇ V  . (16) 

The boundary condition is given by the continuity of the normal component 
of the electric flux density 
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5. BEM DISCRETIZATION 

For the numerical solving of equation (16) we choose a tetrahedron network 
and the first order nodal elements: 
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Using Galerkin technique equation (16) and boundary condition (17), we have: 
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where φ is the node-shaped element of order 1. On the border we have a 

relationship between the potential V and its derivative by the normal 
n
V
∂
∂ , given by 

equation (3) and (12) written on the boundary Ω∂ . 

6. THE THERMAL DIFFUSION PROBLEM, COUPLED WITH THE MASS 
PROBLEM AND MOTION OF THE WOODEN PIECE 

The diffusion of the thermal field is described by the equation 

 p
t
TcT =
∂
∂

+∇λ∇−  , (20) 

where λ  is the thermal conductivity, c is the volume thermal capacity, and the 
specific losses in the dielectric are given by relation: 2ωε ' tgδp E= ,where the electric 
field strength E is obtained from the electric field problem. The boundary condition is 

 ( )– / eT n TΤλ ∂ ∂ = α( − ),  (21) 

where: α is the coefficient of thermal transfer on the surface, and eT  is the 
temperature outside the piece of wood. The numerical solution of the equation (20) 
is given by FEM, using the same mesh as within the problem of electric field, 
while the time discretization has been done using the trapeze method.  

The water vaporization from the wooden mass takes place in a small part 
inside the wooden piece and largely on its surface. To take into consideration the 
inner vaporization leads to the computation of a complicated water diffusion 
problem in which a non-homogeneous pressure field interferes due to the water 
vapors. The high anisotropy of the wood, due to the orientation of the wooden 
fibers, makes almost impossible the water diffusion problem to be accurately 
modeled. Additionally, for drying processes, the rapid appearance of water vapors 
from the inner part of the wood can lead to its destruction. For this reason, the 
maximum temperature inside the wooden object has to be limited (bellow 700C). 
Thus, we can neglect the inner vaporization and take into consideration only that 
one on the surface of the wood. The evaporation speed on the surface unit depends 
on the difference between the temperature on the surface of the wood and the 
ambient temperature. It also depends on the degree of saturation of the vapors, on 
the air pressure, on the air flow in the proximity of the wooden object etc.  

We admit that the evaporation speed 
t
s

d
dτ  of the water on the unit surface 

linearly depends on temperature 
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If Λ  is the latent heat of the vaporization volume, then the loss of the heat 
due to the vaporization on the surface reduces the temperature on the surface alike 
the thermal convection. So, we can take into consideration the vaporization by 
using a virtual convection coefficient in the boundary condition (6), according to 
the relation:  
 wech Λ+α=α  . (23) 

The estimation of the temperature field on the interval ],[ 1+ii tt  allows the 
calculation of the water volume evaporated during this interval: 
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This leads to a change of the piece moisture. The physical parameters of the 
wooden piece depend on temperature and moisture and they are iteratively rectified 
at each time step. The computation of the moving speed inside the oven requires 
the following procedure: the requisite time for reaching the imposed moisture value 
for the stationary piece is calculated; then the oven active length is divided by this 
time. Since the electric field depends on the position, the speed can be slightly reduced. 

7. RESULTS 

The drying appliance has 5 pairs of electrodes with a diameter of 10 mm and a 
length of 150 mm on the Ox-axis, and the dielectric material has the sizes x = 80 mm,  
y = 100 mm and z = 10 mm (Fig. 2). The dielectric has the following properties: 
permittivity ε’= 6.5, loss factor tg δ = 0.1, thermal conductivity λ = 0.41 W/m.0C, water 
mass density τ  = 1 000 kg/m3, wood heat capacity c = 2 000 J/kg.0C, convection heat 
transfer coefficient αc = 15 W/m2 0C, frequency f = 13.56 MHz. The wood used in this 
situation has an initial moisture content of 45%, at the end of the drying process a value 
of 10% being obtained, when it is considered that the wood is dry. The mesh network 
has 1071 tetrahedral elements and 281 nodes.  

 
Fig. 2 – RF drying appliance. 
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If the piece of wood does not move we obtain the results in Figs. 3–5 for 
different operating voltages of the electrodes. 

 
Fig. 3 – The maximum temperature calculated in the volume of the stationary dielectric 

in relation to time for different anode voltages. 

 
Fig. 4 – The average temperature calculated in the volume of the stationary dielectric 

in relation to time for different anode voltages.  

 
Fig. 5 – The variation of the moisture of the stationary dielectric 

in relation to time for different anode voltages. 
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Fig. 6 – The maximum temperature calculated in the volume of the moving dielectric 

in relation to time for different anode voltages. 

 
Fig. 7 – The average temperature calculated in the volume of the moving dielectric 

in relation to time for different anode voltages. 

 
Fig. 8 – The variation of the moisture of the moving dielectric 

in relation to time for different anode voltages. 
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The speed by which the dielectric moves inside the applicator is determined 
automatically by the software after the first run in which it sets the time necessary 
for the drying of the dielectric when it is stationary, and placed in the center of the 
applicator. This value of the speed ensures that, when it exits the applicator, the 
dielectric is dry. If desired, speed may be changed and made variable over time.  

If the piece of wood is moving we obtain the results in Figs. 6–8 for different 
operating voltages of the electrodes. 

8. CONCLUSIONS 

The hybrid FEM-BEM method developed in this paper for the analysis of 
the radiofrequency electromagnetic field used to dry moving dielectrics has the 
great advantage that the mesh network remains unchanged when the dielectric 
moves. Therefore, the FEM matrices used to discretize the electric field (19) and 
the thermal field (20) remain unchanged, being calculated once at the beginning of 
the movement. Also, some of the BEM matrices remain unchanged (the coupling 
matrices between their own surfaces). Only the coupling matrix between the 
surface of the wood and that of the electrodes is recalculated at each step of 
movement. For the evaporation of water we suggested a simple model, in which 
the evaporation is allowed to take place only at the surface of the wood, and the 
diffusion of water in the wooden mass is done instantly. The importance of the 
presented study consists in the fact that the maximum temperature, that cannot 
exceed 1000C, can be estimated, and, for different electrode voltages, we can be 
recommended the moving speeds. 

Received on June 30, 2014 
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