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This paper highlights the main results of our research in the field of recurrence plot analysis in the last five years.  It briefly 
discusses results in the study of the method itself, as well as in some applications of it, i.e. characterization of speech signals, 
detection and localization of partial discharges in electric cables, representation of transient signals, estimation of signal 
parameters, reduction of additive noise, and representation of digitally modulated signals amplitude shift keying (ASK), 
frequency shift keying (FSK), phase shift keying (PSK) and orthogonal frequency division multiplex (OFDM ). 
 

1. INTRODUCTION 

Most researchers would agree that a candidate complex 
system should have most or all of the following 
“ingredients”: 
• The system contains a collection of many interacting 

objects. 
• The objects can adapt their strategies according to 

their history. 
• The system is typically “open”. 
• The system appears “alive”. 
• The system exhibits emergent surprising phenomena 

and even extreme. 
• The emergent phenomena typically arise in the 

absence of any sort of “invisible hand or central 
controller”. 

• The system shows a complicated mix of ordered and 
disordered behavior. (Neil Johnson – “Simply 
Complexity”, 2010). 

Numerous systems, especially those in the animate 
realm, possess complexities that are at best nonlinear and 
non-predictable. Common ground between living and 
nonliving systems resides in their shared property of 
recurrence. As signals grow in complexity, however, 
recurrences become rarer, and efficient compressibility is 
resisted. But the lesson is clear: Insofar as natural patterns 
are found in all dynamical systems, the degree to which 
those systems exhibit recurrent patterns speaks volumes 
regarding their underlying dynamics. That is, within the 
dynamical signals expressed by living and non-living 
signals there are stretches, short or long, of repeating 
patterns. And, on reflection, it should be appreciated that 
the entire scientific enterprise is based upon the concept of 
recurrence: To be accepted as valid, experimental results 
must be repeatable in the hands of the original investigator 
and verifiable by independent laboratories. Patterns of 
recurrence in nature necessarily have mathematical under-
pinnings, which will be given by recurrence quantification 
analysis (Eckmann, Kamphorst, and Ruelle, 1987). The 
paradigm of deterministic chaos has influenced thinking in 
many fields of science. New mathematical concepts, such 
as Lyapunov exponents, recurrences and fractal dimensions 
have been brought out. Nonlinear and especially chaotic 

systems show rich dynamical structures and sometimes 
provide an explanation for irregular fluctuations in “real 
life” systems which do not seem to be inherently stochastic. 
Now, chaos theory has taught us that random input is not 
the only possible source of irregularity in the output of a 
system. Nonlinear, chaotic systems can produce very irregular 
data with purely deterministic equations of motion in an 
autonomous way, i.e. without time dependent inputs. Of 
course, a system which has both nonlinearity and random 
input, will most likely produce irregular data as well. 

Recurrence plots, a rather promising tool of data 
analysis, have been introduced by Eckman et al. in 1987. 
They visualize recurrences in phase space and give an 
overview of the system dynamics. Two features have made 
the method rather popular. Firstly, they are rather simple to 
compute and secondly they are putatively easy to interpret. 
However, the straightforward interpretation of recurrence 
plots for some systems yields rather surprising results. 
Besides, the attractor can be reconstructed from the re-
currence plot (Thiel et al., 2004). This means that it 
contains all topological information of the system under 
question in the limit of long time series (Bandt et al., 2002). 
It has been proven mathematically that one can recreate a 
topologically equivalent picture of an original multidimensional 
system behavior by using the time series of a single 
observable variable (F. Takens – “Detecting strange attractors 
in turbulence”, 1981). The basic idea is that the effect of all 
others (unobserved) variables is already reflected in the 
series of the observed output. Furthermore, the rules that 
govern the behavior of the original system can be recovered 
from its output. When we are trying to understand an 
irregular (which essentially means here non-periodic) sequence 
of measurements an immediate question is what kind of 
process can generate such a series. In the deterministic 
picture, irregularity can be autonomously generated by the 
nonlinearity of the intrinsic dynamics. The two paradigms, 
nonlinear deterministic and linear stochastic behavior, are 
the extreme positions in the area spanned by the properties: 
“nonlinearity” and “stochasticity”. Now, let us suppose that 
we have a dynamical system which is both stationary and 
deterministic. We must now examine this system. Suppose 
that we can measure some single scalar quantity at any 
time. That is, we have an observation function :  g M R→ . 
This observation function provides us with a way to 
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measure the current state of the system: ( )ng z . Since ( )g i  
gives us only a scalar value, it cannot offer a complete 
description of the system. But, observing ( )n nx g z=  at 
many successive times will! i.e. the evolution of ( )nx  will 
be in many ways similar to that of

 ( )nz – according to the 
celebrated Taken’s embedding theorem.  

Our work in the last years showed that recurrence plot 
analysis (RPA) can at least be a viable alternative to classic 
signal processing tools. The following sections present an 
overview of some interesting results spanning various fields, 
from speech and electric cables to digital modulations. 

2. OVERVIEW OF THE MAIN RESULTS 
IN RPA STUDY 

2.1. RESULTS IN PHASE SPACE RECONSTRUCTION  

We showed in [1] that a rescaling of the time axis of the 
analyzed signal modifies the phase space trajectory when 
the embedding parameters are not changed. More precisely, 
the parameter that matters here is τ, i.e. the time delay. 
However, if we perform an appropriate scaling of this 
parameter the trajectory remains basically the same (but 
with a different density or “drawing” speed). The effect on 
the recurrence plot is dilation or contraction of the patterns 
it contains. 

In [1], we showed as well that when dealing with 
rescaling of the amplitude axis an appropriate scaling of the 
recurrence threshold, ε, is required in order for the 
structures contained by the recurrence plot to remain the 
same. Hence, a time-varying ε would be required when 
analyzing a signal that contains at different time instants 
components of different amplitudes. We showed that this 
inconvenient is removed if we replace the Euclidean 
distance with an angular distance. By using the latter, the 
resulting recurrence matrix becomes practically immune to 
slow amplitude variations in the analyzed signal [2]. 
(However, we have not obtained yet similar results concerning 
the rescaling of the time axis. If the analyzed signal 
contains at different time instants the same basic signal 
dilated or contracted, a fixed τ analysis will not work well.) 

In [3], we showed that phase space trajectory reconstruction 
by time-delay embedding is essentially equivalent to an 
analysis of the signal on time overlapped windows. While 
the size of these windows is 1 ( 1) τm+ − ⋅ , they contain the 
entire information that can be found in the phase space 
vectors (and even more, if τ is greater than 1). We named 
these signal slices vector samples. We also showed that the 
distance between two points on the trajectory is in fact the 
result of computing a function of the two vector samples 
that define the two points. If instead of choosing a distance 
in the mathematical sense we choose an arbitrary function, 
instead of recurrences we obtain a broader class, i.e. 
generalized recurrences. Therefore, we showed that from a 
signal processing point of view the effect of the (time-delay 
embedding) RPA method is similar to the effect of an 
analysis of the similarity between all pairs of two signal 
windows (similarity which is computed in the sense of a 
chosen distance). Besides, we showed in [4] that such an 
analysis is at the bottom of the computation of several 
frequently used signal processing measures. 

2.2. RESULTS IN PHASE SPACE 
TRAJECTORY ANALYSIS 

We already mentioned the angular distance [1, 2], that 
helped us perform a recurrence plot analysis that was 
independent of the slow amplitude variations in the signal. 
Besides it we also introduced in [4] other pseudo-distances, 
i.e. the dynamic range distance and the scalar product 
distance. We made use of them in defining generalizations 
for the autocorrelation function and for the signal 
derivative. Both of them proved to be more noise robust 
than the classic counterparts. 
Another RPA method parameter that we studied is the 
recurrence threshold, ε. As the value of this parameter 
decides is a recurrence is recorded or not, it is desirable that 
ε  adapts to the level of noise in the signal. We managed to 
obtained that by computing ε as the mean distance between 
all successive pairs of points on the trajectory [5, 4]. 

2.3. RESULTS IN RECCURENCE PLOT 
IMAGE PROCESSING 

As the recurrence plot is in fact an image, the idea of 
using image processing to reduce noise came naturally. We 
obtained promising results in this area both by using a 
combination of several nonlinear filters applied sequentially 
in order to reconstruct the diagonal structures through 
interconnection of points spread by noise [6], and by using 
a single (nonlinear, as well) filter designed to reconstruct 
the diagonal structures based on the distribution of black 
points along the diagonals in the recurrence plot [7]. 

3. CHARACTERIZATION OF SPEECH SIGNALS 

In [8], it was shown that the recurrence rate computed on 
time sliding windows can be successfully used to obtain a 
real-time segmentation (in vowels, consonants, and transient 
parts) of the speech signal. The segmentation signal thus 
obtained can be also used as an excitation control signal in 
order to obtain a good quality in speech synthesis. 

The recurrence rate computed on time sliding windows 
was also involved in obtaining a (time-varying) measure 
that was able to separate the fundamental periods in vowel 
segments. It should be mentioned that the recurrence plot 
was previously filtered by removing from it all diagonal 
lines whose length was below a certain threshold. The 
signal obtained by computing from this recurrence plot the 
recurrence rate on time sliding windows was used in extracting 
the basic vowel structure on a fundamental period. This 
basic structure is important in tasks such as speech recognition 
and compression. 

4. DETECTION AND LOCALIZATION OF PARTIAL 
DISCHARGES IN ELECTRIC CABLES 

In [9], the RPA methodology was used in estimating the 
pulse width in a system for localizing the partial discharges 
in electric cables. The system was based on the fact that the 
time dilatation of the signal is proportional to its propagation 
time. The estimation of pulse widths was performed by 
computing a local recurrence rate for the analyzed signals. 
(This local recurrence rate was discussed in more detail in 
[5].) 
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5. REPRESENTATION OF TRANSIENT SIGNALS 

By transient signal we understand a signal portion whose 
duration is finite and much smaller that the observation 
duration of the entire signal. Such a signal has, generally, 
the shape of a pulse or of a time-localized oscillation. 

We proposed in [3] two new recurrence quantification 
analysis (RQA) measures –σc , and σd . They are computed 
by performing a normalized summing of the elements of the 
recurrence matrix column-wise and diagonal-wise, 
respectively. Then, we showed in [4] that σd  is very 
similar to the signal autocorrelation function, while σc  is 
very similar to a time-distributed histogram of the signal.  

The computation of these two measures requires two 
parameters: w (the vector sampling window size), and ε (the 
recurrence threshold). If we maintain one of them fixed 
while sweeping with the other one the whole range of 
values, we obtain two types of bidimensional 
representations: the  t – ε, and the  t – w  representations. 

We showed [4] that the representations based on σc  
allow the time localization of the transient signal, while the 
representations based on σd  allow the identification of its 
fundamental period (after it was first localized). Likewise, 
from the analysis of these bi-dimensional representations 
one can qualitatively estimate the influence that the w  and 
ε  parameters have on the computation of the σc  and σd  
RQA parameters. Thus, this analysis showed that the best 
results are obtained for values of w  smaller than half of the 
fundamental period of the signal and for values of ε around 
the mean distance between all successive points on the 
phase space trajectory (that we mentioned in Section 2.2). 

In addition to the representations mentioned here, in [4] 
we introduced another two t – w representations: a t – w 
representation of the dynamic range distance from the zero 
point (which proved to be useful in estimating the 
apparition time and duration of a transition between two 
stable states in a signal), and a t – w representation of the 
dynamic range distance between successive vector samples, 
multiplied by the sign of the difference between these 
vector samples (which proved to be much more noise 
robust than the classic signal derivative). (The dynamic 
range "distance", as well as this generalization of the signal 
derivative, were already mentioned in Section 2.2.) 

6. ESTIMATION OF SIGNAL PARAMETERS 

When analyzing a transient signal, the main parameters 
of interest are its time of arrival and its duration. We 
showed [3–5] that by using the representations discussed in 
the previous section these parameters can be easily obtained 
(from a time detection curve computed by using the σc  
RQA measure). Compared to the classic energy detector, 
our detector proved to be more efficient in terms of high 
probability of detection at low false alarm probability. Its 
disadvantage is (at least for the moment) its computational 
complexity, as it requires N 2 steps for a signal of N 
samples.  

When it comes to estimating the fundamental period of a 
signal, the σd  RQA measure (introduced in the previous 
section) proved to be more efficient than the classic 

averaged magnitude difference function (AMDF), as we 
showed in [10]. The measure proposed by us accentuates 
the desired maxima and removes the local maxima 
introduced by the higher frequency components in the 
signal. We also showed that the results can be improved 
even more in terms of signal-to-noise ratio (SNR) by first 
applying a nonlinear filter on the recurrence plot (as already 
mentioned in Section 2.3). 

The σd  measure proved to be useful also as a mean to 
distinguish sounds produced by beaked whales from sounds 
produced by dolphins [11]. This distinction can be made on 
the basis that beaked whales sounds have a slight frequency 
modulation. Although the slope of these chirp signals is 
very low, it causes a significant change of σd . As we 
showed in [4], not even the fractional Fourier transform 
allows such an easy distinction between a sinusoidal signal 
and a signal with a very small frequency modulation.  

In the previous section we already mentioned the use of 
the dynamic range distance in estimating the time instant 
and the duration of the transition between two stable states 
in the signal. We also showed in [4] how it can be used for 
making a fast estimation of the signal time of arrival in an 
ultrasonic water pipe investigation system. In [4] we 
showed  as well that obtaining the signal maxima envelope 
is essentially the result of processing the trajectory obtained 
by vector sampling the signal with a window of size w. 
More precisely, this processing consists of computing the 
maximum distance between every point on the trajectory 
and the origin. 

7. REDUCTION OF ADDITIVE NOISE 

Regarding additive noise reduction, we mentioned in 
Sections 2.3. and 6 that by filtering the recurrence plots we 
can obtain a reduction of the effect noise that was present in 
the analyzed signal. In fact, this is not a reduction of noise 
in the analyzed signal, but a reduction of the effect that 
noise has on the analysis of the signal.  

In some particular cases, as we showed in [3], the signal 
can be partially cleaned by using the σc  measure (introduced 
in Section 5). The method consists of multiplying the signal 
with the computed σc , and then recomputing σc  and so on. 

For relatively low levels of noise the method gives good 
results after only few such iterations. The disadvantage is 
that it works only for signals in which transients are rare. 
Besides, only the noise in the transients-free areas of the 
signal is reduced. 

8. REPRESENTATION OF DIGITALLY 
MODULATED SIGNALS 

8.1. ASK, FSK, AND PSK  

In [10], we showed the results of applying the RPA 
method on digitally modulated signals (amplitude shift 
keying, frequency shift keying, and phase shift keying). We 
showed that when represented as phase space trajectories 
these signals become: a series of concentric ellipses having 
the same eccentricity (for the ASK signal), a series of 
concentric ellipses having different eccentricities (for the 
FSK signal), and a series of similar overlapped ellipses (for 
the PSK signal). 
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In the case of the ASK signal, the areas corresponding to 
different amplitudes can be distinguished in the recurrence 
plot based on the thickness of the diagonal lines. Given that 

 
Fig. 1 – OFDM signal with two subcarriers: the phase space 

trajectory of the signal; the time series of the signal; the recurrence 
matrix of the signal. 

 
Fig. 2 – Noisy OFDM signal: the time series of the signal; the 

recurrence matrix of the signal. 

the recurrence threshold, ε, is fixed for the entire signal, the 
recurrence ball contains more points when the sinusoid 
amplitude is smaller, which leads to a thicker diagonal line. 

The recurrence plot obtained for the FSK signal, 
however, contains diagonal lines having the same thickness 
(because the amplitudes of the sinusoids are the same). 
What differs in this case is the distance between succesive 
diagonal lines (which is normal, if we consider that this 
distance is in fact the distance between the time instants 
when the signal repeats itself – hence, it is the fundamental 
period of the signal). 

For the PSK signal the recurrence plot contains neither 
different thicknesses of the diagonal lines, nor different 
distances between them. Nevertheless, the different areas of 
the signal are identifiable through the “ruptures” caused by 
the phase jumps on the recurrence plot. Although the blocks 
located in the recurrence plot along the main diagonal are 
identical, between such a block and the block that succeeds 
it horizontally there is an offset between the diagonal lines. 
This offset can then be easily related to the phase difference 
between the two corresponding portions of the signal. 

Therefore, the recurrence plots that correspond to signals 
having one of the three digital modulation types described 
here allows a quick identification of the modulation type 
and of the time instants when the transmitted symbol 
changes. We proposed in [10] two methods for identifying 
these transition moments between two symbols. The 
recurrence plots also allow us to obtain the parameters that 
correspond to the signal segments where the transmitted 
signal remains constant. 

8.2. OFDM 

A new challenge for this approach is the detection of the 
OFDM modulation. Firstly, we have considered the 
simplest case: transmission with two subcarriers. When 
transmitting {1,1,1,1} the results can be seen in Fig. 1. 
Because the cyclic prefix brings the same information on 
the recurrence matrix, it has been removed in order to 
simplify the image. 

Although the time series of the signal does not exactly 
say what it contains, in phase space it can be clearly seen 
that the signal contains two sine waves. In its evolution on 
one period it can be observed that the two tangent ellipses 
are described in only one period, afterwards the process 
being continued. These ellipses do not have the same 
center, but they are tangent, meaning that one period of the 
signal contains the two ellipses, hence the two sine waves. 

Moreover, the representation of the recurrence matrix is 
given by the unique representations of the ellipses in phase 
space, which are in turn given by the parametric curves 
resulted from the time series. Hence, the relationship 
between the time series and the recurrence matrix is 
unambiguous. 

The recurrence matrix confirms that there are two 
oscillations at a time. Accordingly, the periodic pattern is a 
sign of periodicities in the time series, the distance between 
the patterns corresponding to a period.  

Moreover, it is clear that the first frequency is 1/T and 
the second frequency is 2/T , that is f0, respectively 2 f0. 
This fact is confirmed by the two lines parallel with the 
main diagonal which are divided by one short line (that 
means that the frequency ratio is 2). 
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If the signal is affected by noise (SNR = 15 dB, Fig. 2), the 
main characteristics are kept. The phase space still has the 
two ellipses visible (although, if the SNR decreases, they 
become harder to distinguish) and the recurrence matrix has 
the same patters, but fuzzier with the declining of SNR. 

 
Fig. 3 – OFDM signal with 4 subcarriers: the phase space 

trajectory of the signal; the time series of the signal; 
the recurrence matrix of the signal. 

In a similar way, if the number of subcarriers increases, 
for example if there are 4 subcarriers, then the recurrence 
matrix changes (Fig. 3).  

The phase space of the signal reveals the simultaneous 
existence of four sine waves in one period of the time 
series. Also, the structures from the recurrence matrix 
divide the lines parallel with the main diagonal in four, 
meaning that the frequency ratio is 4. These short segments 
fraction the diagonal line into equidistant segments, 
meaning that the frequencies are f0, 2 f0, 3 f0 and 4 f0. 

 
Fig. 4 – Noisy OFDM signal (4 subcarriers): the time series 

of the signal; the recurrence matrix of the signal. 

When affected by noise (SNR = 15 dB), the time series 
succeeds to maintain its characteristics, although the phase 
space trajectory and the recurrence plot are not that clear 
any more (Fig. 4). 

9. CONCLUSION 

It is no wonder to anyone anymore that the world we live 
in is a large complex system having chaotic dynamics. 
Tools such as Taken's embedding theorem and the 
recurrence plot introduced by Eckmann et al. allow the 
study of this dynamics through the concept of recurrence by 
using a series of scalar observations of the system state. 
These tools formed together what is now known as recurrence 
plot analysis, or RPA plus recurrence quantification 
analysis (RQA).  

While various applications of RPA were reported in the 
last years in various fields, our work was focused on 
studying the potential of the method in solving signal 
processing tasks (or at least bringing new insights on them). 
This paper brought together in a compact form the main 
results we obtained, as well as some work in progress. 

In short, we studied RPA (+RQA) and used it in various 
signal processing problems. We studied its behavior for 
various signals and typical situations in signal processing. 
We proposed new methods to compute distances between 
phase space vectors, as well as new methods for choosing 
RPA parameters. We also showed the relationship between 
RPA and classic signal processing, we introduced two new 
RQA measures, and we proposed some filters for reducing 
the effect of noise on the recurrence plot. We obtained 
interesting results in speech signal analysis and synthesis, in 
partial discharge detection in electric cables, in the 
representation of transient signals, in the estimation of their 
parameters, as well as in the study of digitally modulated 
signals. 
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