
 Rev. Roum. Sci. Techn.– Électrotechn. et Énerg.
 Vol. 64, 4, pp. 423–428, Bucarest, 2019

1 University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovica 6, 21000 Novi Sad, Republic of Serbia, E-mails:
{marko.popovic, miroslav.popovic, branislav.kordic}@rt-rk.uns.ac.rs, gsilvia@uns.ac.rs.
2 Mathematical Institute SASA, Belgrade, Republic of Serbia, E-mail: gsilvia@uns.ac.rs.

FORMAL VERIFICATION OF LOCAL AND DISTRIBUTED PYTHON
SOFTWARE TRANSACTIONAL MEMORIES

MARKO POPOVIC1, MIROSLAV POPOVIC1, SILVIA GHILEZAN1,2, BRANISLAV KORDIC1

Key words: Formal verification, Push/pull semantic model, Serializability, Python, Software transactional memory (STM).

Both local and distributed Python STMs are targeting a wide range of application domains, including critical infrastructures,
such as cyber-physical systems, internet of things, etc., and formal verification of such software components is considered
mandatory. Recently, the push/pull semantic model of transactions has appeared as a solution that unifies a wide range of
transactional memory algorithms. In this paper, we formally prove that both local and distributed Python STM implementations
are serializable by constructing their push/pull model and by showing that the push/pull model satisfies the correctness criteria
for the relevant push/pull semantic rules. The main contributions of the paper are the following: (i) the PSTM and DPSTM
push/pull semantic model, (ii) the proofs of the relevant push/pull semantic rules, and (iii) the way how the model and the proofs
have been constructed.

1. INTRODUCTION

Transactional memory (TM), originally introduced as an
architectural support for lock-free concurrent data structures
[1], became a well-known paradigm that aims to replace
locks with transactions. TM key advantages are: (i) it
supports higher-level abstraction and composition and thus
makes parallel programming easier, and (ii) it supports
speculative (lock-free) transactional execution and thus
provides better application performance, especially when
contention among threads is lower [2]. It was not long after
a software transactional memory (STM) was introduced as
an implementation of TM in software [3].

Python STM (PSTM) [4] is designed as a general-
purpose STM for Python targeting a wide range of
application domains, from simulations [5, 6] and critical
infrastructures [7], to data science and enhanced learning
[8]. As a curiosity, it seems appropriate mentioning that
PSTM was originally created with the aim to eliminate a
barrier-like synchronization in a very large Python
computational-chemistry simulation program for the protein
structure prediction problem [5, 6]. Since any STM without
contention management is known to be vulnerable to higher
concurrency workloads, the online transaction scheduler
architecture and four scheduling algorithms for scheduling
transactions on PSTM were developed [9,10] in order to
lessen this weakness. Additionally, common concurrent
data structures [11] based on PSTM, such as a concurrent
list [12], concurrent queue [13], etc., were developed to aid
easier PSTM-based application development. Finally, the
first version of distributed PSTM (DPSTM) for applications
in distributed settings was recently developed [14].

Traditionally, the formal verification of software
components of critical infrastructures is considered
mandatory. Therefore, PSTM has already been formally
verified using two independent and complementary
approaches that are based on timed automata (TA) [15] and
communicating sequential processes (CSP) [16],
respectively. Of course, this research remains open for
application of other formal methods. One particularly
interesting formalism is the push/pull semantic model of
transactions [17].

In this paper, we formally prove that both (D)PSTM
(PSTM and DPSTM) implementations are serializable by
applying the push/pull semantic model. The main motive
for this paper was to render even better confidence in the
PSTM correctness by: (i) using this third independent and
complementary approach (besides TA and CSP), and (ii) by
introducing (D)PSTM to a wider research community
familiar with the well-known push/pull semantic model.

The main original contributions of the paper that may be
utilized by other researchers and practitioners are the
following: (i) the (D)PSTM push/pull semantic model, (ii)
the proofs of the relevant push/pull semantic rules, and (iii)
the way how the model and the proofs have been
constructed. Factors that qualify novelty and utility of these
contributions are the following: (i) this is the first paper that
tries to rigorously apply the push/pull semantic model to a
real STM not covered by [17], (ii) although the authors of
the push/pull semantic model have put a respectable effort
in defining their model, formalizing and verifying a real
STM using their approach is far from being trivial, and (iii)
there is a realistic expectation that the push/pull semantic
model may be widely used for specifying transactional-
based concurrent software, for example see [18].

1.1 RELATED WORK

PSTM was formalized using TA and analyzed by the
model checker UPPAAL [15]. PSTM TA-based model
comprises automata representing a transaction, the PSTM
queue, and the TM. The three properties that were proved
are: (i) safety (i.e. atomicity), liveness (at least one of the
concurrent transactions will commit), and (iii) termination
(all cyclic transactions eventually complete).

PSTM was also formalized using CSP, and analyzed by
the model checker Process Analysis Toolkit (PAT) [16].
The lower-level abstraction model comprises processes
representing a transaction, the Application Programming
Interface (API), the server, and the system dictionary. The
three properties that were proved are: (i) deadlock-freedom,
(ii) ACI (Atomicity, Consistency, Isolation), and (iii)
optimism (at least one of the concurrent transactions will
commit).

The three particular PSTM transaction scheduling
algorithms (Round Robin, Execution Time Load Balancing,

424 Formal verification of Python software transactional memories 2

and Avoid Conflicts) from [10] were formalized using the
process algebra CSP, and analysed by the model checker
PAT, in order to evaluate them by: (i) verifying the
properties of deadlock freeness and starvation freeness, and
(ii) comparing the performance of these three algorithms
from the perspective of makespan, speedup, aborts, and
throughput [19].

The push/pull semantic model [17] may be used to prove
serializability of a given STM as follows. Since the
push/pull semantic model satisfies serializability, one may
prove that a given STM satisfies serializability by: (i)
constructing its push/pull model, and (ii) proving that this
model satisfies respective correctness criteria. Proofs of
correctness criteria typically involve commutative
properties of sequential programs [20].

A preliminary version of this paper appears in the
Proceedings of the ECBS 2019 [21]. This paper is the
extension of [21] that now covers formal verification of
both PSTM and DPSTM, shortly written as (D)PSTM.

2. PUSH/PULL SEMANTIC MODEL

The push/pull model of [17] abstracts the system state
with a global shared log of the operations that were pushed
by all the threads, and a per-thread local log of operations
that were pulled or applied by a thread. The model includes
the following rules:

 APPLY(op): apply an operation op to local log.
 UNAPPLY(op): rewind local log to remove op.
 PUSH(op): push op to the global log.
 UNPUSH(op): recall op from the global log.
 PULL(op): pull op from the global log.
 UNPULL(op): discard op from the local log.
 CMT(txn): commit a transaction txn.

Note that (D)PSTM has only committed operations in the
global log.

op1(args1)

op2(args2)

Local log

op1(args1)

op2(args2)

Global log

op3(args3) PUSH op3(args3)

PULL

op4(args4) op4(args4)PUSH

PULL

Fig. 1 – A Push/Pull transaction for money transfer.

Figure 1 illustrates a simple example of a push/pull
transaction, in particular a push/pull transaction for money
transfer, which will be used as a running example in this
paper. The task of this transaction is to realize the payment
of p euros from the account x to the account y by
subtracting p euros from x and adding p euros to y. In order
to realize this task, this transaction conducts the following
steps: (1) pull the operations op1 and op2 that were used to
set the current values of transactional variables (t-variables)
x and y, respectively, (2) apply the operation op3 that sets
the new value of x to (x – p), (3) apply the operation op4
that sets the new value of y to (y + p), (4) push the
operations op3 and op4 from its local log to the global log,
and (5) commit the transaction, i.e. commit the operations
op3 and op4 in the global log.

Next, we briefly recall the rules that will be used to
model (D)PSTM semantics, and these are: APPLY, PUSH,

PULL, and CMT [17].
Definition 1 (Relevant push/pull rules). The (D)PSTM

relevant push/pull semantic rules are defined as follows:

APPLY

]}, unpushed,,σ,σ,[,σ,tx {

},,σ,tx {

)fresh()(

σ,σ, allows)(

),()(

1121122

fwd
1111

211

2tx1

GcidmLc

GLc

idiii

mLii

cmci







 

   

PUSH

]gUCmt,[},] pushed,[,σ,tx {

},] unpushed,[,σ,tx {

 allows)(

 \)(

)(

122111

fwd
122111

1

pushed21gUCmt1

unpushed1

opGLcopLc

GLcopLc

opGiii

opLLGii

Lopi




 



   
PULL

],[]},pulled,[,σ,tx {

],[},,σ,tx {

)(

 allows)(

)(

2111

fwd
2111

unpushedpushed

GgopGopLc

GgopGLc

LLopiii

opLii

Lopi










 

CMT

,},σ,{

,},σ),tx {(

),,(cmt)(

.),(,)(

)(

)(fin)(

22111

12111

211

1pulled1

11

GTLcT

GTLc, cT

GLGiv

gCmtgGgopLopiii

GLii

ci







 
1

pushed1
2

211

)
otherwise),(

 ifgCmt),(
),λ((map

),,(cmt

G
gop

Lopop
gopG

GLG



 




In Definition 1 above, we use the symbol ‘ ’ for the
left-mover operator, because the symbol ‘◄’ that was used
in [17] is not available in MS Equation editor. Also, authors
of [17] made an error in CMT in [17], which we corrected
here based on their technical report, see [19] in [17].

According to authors of [17], correctness criteria for
push/pull rules define under which conditions these rules
may be applied; essentially they are the rules’ premises, i.e.
preconditions. For each rule in Definition 1, its
preconditions or correctness criteria (these are synonyms)
are listed above the horizontal line within the rule.

3. PSTM

PSTM-based system architecture is a typical client-server
architecture written in Python [4]. Transactions (clients)
request services from PSTM (server) by calling PSTM API
functions. PSTM serves these requests by managing the
dictionary of shared t-variables, D (like a global log in the
push/pull model). Transactions’ requests are sent to PSTM
over the FIFO queue, q, where they get serialized.

A PSTM transaction typically gets its local t-variable
copies (like a local log in the push/pull model), does some
processing, including updating some local t-variable copies,

3 Marko Popovic et al. 425

and finally commits all its operations on shared t-variables.
Informally, PSTM is serializable because it serves all the
requests atomically. The following two definitions are from
[21]:

“A dictionary item is a pair (ikey, ival), where ikey and
ival are its key and value, respectively. We write the item
read operation as: D[ikey] or read(ikey), and the item write
operation as: D[ikey] := ival or write(ikey, ival).

A t-variable is a tuple (key, ver, val), where key, ver, and
val are t-variable key, version, and value, respectively. A t-
variable (key, ver, val) is stored as the item (key, (ver, val))
in the system dictionary, thus item’s ikey and ival are equal
to ikey = key and ival = (ver, val).”

The main functions provided by PSTM API are the
following:

 addVars(q, K) / v
 putVars(q, W) / v
 getVars(q, K) / V
 commitVars(q, C) / v

The argument q is the PSTM queue. The argument K is a
list of t-variable keys. The argument W is the list of t-
variables to be written. The argument C is a list [R, W],
where R and W are read and write lists of t-variables,
respectively. For more details on PSTM API, see [21].

As already mentioned, PSTM server process serves
PSTM API calls sequentially, by calling its internal
functions with the same name but without the first
argument q. The pseudocodes of these internal functions are
given in Algorithms 1 to 4, respectively.

Algorithm 1: The PSTM server function addVars.
1: addVars(K)
2: for k in K
3: D[k] := (0, none)
4: return ‘yes’

Algorithm 2: The PSTM server function putVars.
1: putVars(W)
2: return commitVars([[], W])

Algorithm 3: The PSTM server function getVars.
1: getVars(K)
2: V := [] // set V to the empty list
3: for k in K
4: vv := D[k]
5: if vv = none then v := (false, none)
6: else v := (true, vv)
7: V := V + v // append v to V
8: return V

Algorithm 4: The PSTM server function commitVars.
1: commitVars(q, C)
2: R, W := C
3: if for all t in (R union W). t.ver = D[t.key].ver then
4: for w in W
5: write(w.key, (D[w.key].ver + 1, w.val))
6: return ‘yes’ // a transaction got committed
7: else
8: return ‘no’ // a transaction got aborted

4. DPSTM

Like PSTM-based system architecture, DPSTM-based
system architecture is also a client-server type of
architecture [14]. The main difference between these two
architectures is that the former architecture supports
centralized applications comprising transactions that
execute on a single multicore machine, whereas the latter

architecture supports distributed applications comprising
transactions that execute on different machines in a
network. Since in a DPSTM-based system, transactions and
DPSTM execute on different machines, transactions use
their proxies (also known as DPSTM clients) to request
service from DPSTM.

A typical hardware infrastructure of a DPSTM-based
system is a computer network, such as Internet, which is
used to connect remote processors (computers, mobile
phones, Internet of Things, etc.) to a server computer. The
former hosts distributed application processes comprising
transactions and their proxies, whereas the latter hosts
DPSTM. Since DPSTM is targeting critical infrastructures,
the proxies and DPSTM server process communicate over
an authentication-secured connection.

DPSTM-based system architecture was designed as an
extension of PSTM-based system architecture. DPSTM
maintains the same system dictionary of shared t-variables,
D, as PSTM. Each t-variable (key, ver, val) is again stored
in D as a pair (ikey, ival), where ikey is equal to key and ival
is equal to (ver, val). DPSTM supports the same set of
operations on D (addVars, putVars, etc), and it performs
these operations atomically, which is the key idea that
provides serializability of both architectures. Similarly,
DPSTM transactions have the same behavior, i.e. the same
lifecycle, as PSTM transactions – they get their copies of t-
variables at the beginning, do local processing, and update
modified t-variables at the end.

The architectural extension is made by introducing
proxies, which transparently connect transactions to
DPSTM, such that transactions are not aware that they and
DPSTM execute in different machines – transactions call
operations on proxies, which simply delegate these
operations to DPSTM.

DPSTM was designed to have the API with the same
semantics as PSTM API in order to enable easy porting of
already developed PSTM based software components, such
as concurrent data structures, to DPSTM. The only
difference between the PSTM API and the DPSTM API is
their different syntax – the former is functional (i.e.
procedural), whereas the latter is object-oriented. More
precisely, PSTM API is defined as a set of stm.py module’s
functions, whereas DPSTM API is defined as a set of proxy
object’s functions. All the PSTM API functions have their
equivalents within the DPSTM API.

The main syntactical difference between PSTM and
DPSTM APIs is in the syntax of API function calls. Each
PSTM API function has the PSTM queue as its first
argument and is called as a simple (Python module)
function, whereas the equivalent DPSTM API function
does not have the queue argument and is called on a proxy
object (that hides the network communication and the
DPSTM queue). More formally, the PSTM API function
call f(q, args) is equivalent to the DPSTM API function call
p.f(args), where q is the PSTM queue, args are other
arguments of the API function f, and p is the proxy object.
In both cases, the function f returns the same return value r.

The DPSTM API is supported by both the transaction
proxy object and the DPSTM object. However, the
implementations of the DPSTM API within these two
objects are different. The transaction proxy object’s
functions simply delegate their work to the DPSTM
object’s functions with the same name (by calling the

426 Formal verification of Python software transactional memories 4

function with the same name on the DPSTM object, passing
it the arguments, and returning it’s return value), which in
their turn perform the required operations on D.

In order to simplify the formalization of DPSTM-based
system architecture, we assume that DPSTM API
implementation within the DPSTM (object) is defined by
the Algorithms 1 to 4, and that calls to DPSTM API
functions on the DPSTM object map to the corresponding
functions in Algorithms 1 to 4. Then, the DPSTM API
implementation within the transaction proxy object is given
in Algorithm 5, where dpstm is the DPSTM object (in
Python this is a remote customized manager type of object).

Algorithm 5: The DPSTM API exported by a proxy object.
dpstm // dpstm is the DPSTM object

1: addVars(K)
2: return dpstm.addVars(K)

3: putVars(W)
4: return dpstm.putVars(W)

5: getVars(K)
6: return dpstm.getVars(K)

7: commitVars(C)
8: return dpstm.commitVars(C)

5. FORMAL VERIFICATION

As explained in Section 4, DPSTM is an extension of
PSTM for distributed settings, which was designed such
that: (i) DPSTM and PTSM transactions have the same
behavior, (ii) DPSTM and PSTM APIs have the same
semantics, and (iii) DPSTM and PSTM servers provide the
same operations with the same semantics. Therefore, quite
naturally, DPSTM and PSTM share the common push/pull
semantic model, called the (D)PSTM push/pull model.

5.1 (D)PSTM PUSH/PULL SEMANTIC MODEL

This section of the paper presents the (D)PSTM
push/pull semantic model using the DPSTM API syntax.
Definition adapted from [21]: “The generic (D)PSTM
transactional algorithm T is defined as a block of code that
starts with a getVars operation, which pulls each t-variable
only once, performs local processing including updating
local copies of t-variables, ends with a commitVars
operation, and always terminates, see Algorithm 6.”

Algorithm 6: The generic (D)PSTM transactional algorithm T.
1: T(K)
2: V := dpstm.getVars(K)
3: Do local processing and update (write) local copies of t-variables.
4: v := dpstm.commitVars(C)

Note on Algorithm 6: This algorithm generalizes to an

arbitrary transaction with an arbitrary number of getVars
and commitVars, in an arbitrary order, but for brevity we
use this simplest transactional algorithm in this paper.

Definition adapted from [21]: “Definition 2 ((D)PSTM
push/pull semantic model). The (D)PSTM push/pull
semantic model is a mapping of operations within the
generic transactional algorithm T to the corresponding
push/pull rules, denoted as function sm, which is defined in
the following three sub-definitions:

Definition 2.1 (Mapping of line 2 in Algorithm 6): The
getVars(K) call maps as follows. For each k in K, the read

D[k] (line 4 in Algorithm 3) maps to the PULL rule related
to the latest write operation from the global log G that was
used to set D[k] (line 5 in Algorithm 4). So, getVars(K) call
maps to |K| PULL rules, where |K| is the size of K.

Definition 2.2 (Mapping of line 3 in Algorithm 6): The
updates of local t-variable copies (write operations) map to
APPLY rules, one per each write.

Definition 2.3 (Mapping of line 4 in Algorithm 6): The
commitVars(C) call maps as follows. For each t-variable w
in W, the corresponding write operation (line 5 in
Algorithm 4) maps to the PUSH rule related to that write
operation. The end of the for-loop in line 4, in Algorithm 4,
maps to the CMT rule. So, commitVars(C) maps to |W|
PUSH rules and one CMT rule altogether.”

In order to clarify Definition 2, let’s write the algorithm
T as the sequence (list) of functions: Ti = [f1, f2, f3], where
f1 is getVars(K), f2 is update(K), and f3 is commitVars(C);
the function update updates local copies of t-variables in K.
For simplicity, let’s assume that K has a single element k.
Then the function sm maps over Ti to produce the sequence
of rules To = sm(Ti) = [r1, r2, r3], where r1 = sm(f1) = PULL,
r2 = sm(f2) = APPLY, and r3 = sm(f3) = PUSH, CMT.

Definition adapted from [21]: “Definition 3 (Sequential
specification of logs). Both local and global logs are logs of
chronologically ordered write operations with a sequential
specification defined such that getVars([k]) call pulls the
last write to D[k] and that any read within the local
processing evaluates to the value written by the last write.”

Next we use the running example of a money transfer
transaction as an instance Tm of Algorithm 6, shown in
Algorithm 7, in order to illustrate the execution of the
algorithm T.

Figure 2 illustrates the execution of Algorithm 7 within
the push/pull semantic model. The left side shows the local
log Lm of a transaction Tm (executing the algorithm Tm), the
middle side shows the global log G, and the right side
shows transitions. Rows show the current state and the next
event. The evolution of the system proceeds downwards.
Boxes in logs correspond to operations. Checked operations
in the global log are committed.

The variables used in Algorithm 7 and in Figure 2 are the
following. The input parameters of Tm are: K is the list of
keys for the t-variables x and y, K = [kx, ky] and p is the
payment (amount of money to be transferred from x to y).
The variables V, (e, vv), W, and R, are explained in Section
3. Recall that vv = (ver, val). The terms vv.ver and vv.val
are equal to the vv’s elements ver and val, respectively, So,
vvx.val and vvy.val are the input values of the t-variables x
and y, respectively. The variables nvx and nvy are the output
(new) values of x and y, respectively (after the money
transfer). The variables nvvx and nvvy are the output (new)
vv tuples for x and y, respectively.

The lines 1 to 3 in Algorithm 7 n nn correspond to the
first row in Fig. 2. In this section of Algorithm 7, the
transaction Tm calls getVars(K), see line 3 in Algorithm 7,
which maps to the two PULL rules (these two rules are
shown as a cascade of two arrows in Fig. 2) and results in
pulling the operations write(kx, vvx) and write(ky, vvy),
where vvx and vvy are the tuples (verx, valx) and (very, valy),
which contain the version and the value of the t-variables x
and y (with the keys kx and ky), respectively. Note that the
pulled operations appear in the local log Li in the second
row in Fig. 2.

5 Marko Popovic et al. 427

The lines 4 to 7 in Algorithm 7 do not have a

corresponding part in Fig. 2. In this section of Algorithm 7,
Tm does its local processing in order to determine the output
values of t-variables x and y (nvx and nvy).

Algorithm 7: The instance of the algorithm T (money transfer).
1: Tm(K, p) // assume K = [kx, ky]
2: kx := K[0], ky := K[1]
3: V := dpstm.getVars(K)
4: (ex, vvx) := V[0]
5: (ey, vvy) := V[1]
6: nvx := vvx.val – p
7: nvy := vvy.val + p
8: W := R := [(kx, vvx.ver, nvx), (ky, vvy.ver, nvy)]
9: v := dpstm.commitVars([R, W])

Lm

write(kx, vvx) √

G

getVars(q, K)

Lm

write(kx, vvx)√

G

APPLY(write(kx, nvvx))

Local processing

Lm

write(kx, vvx)√

G

PUSH(write(kx, nvvx))

Line 5, Algorithm 4

write(kx, vvx)

write(ky, vvy)

Lm G

CMT(txn)

End of Line 4, Algorithm 4

Lm G

Note:
Sequence of PUSH
and CMT transitions
executes atomically

PULL(write(kx, vvx))

(see Line 3, Algorithm 7)

(see Line 8, Algorithm 7)

(see Line 9, Algorithm 7)

(see Line 9, Algorithm 7)

write(ky, vvy) √ PULL(write(ky, vvy))

write(ky, vvy)√ APPLY(write(ky, nvvy))

write(kx, vvx)

write(ky, vvy)

write(kx, nvvx)

write(ky, nvvy)

write(ky, vvy)√ PUSH(write(ky, nvvy))

write(kx, vvx)

write(ky, vvy)

write(kx, nvvx)

write(ky, nvvy)

write(kx, vvx)√

write(ky, vvy)√

write(kx, nvvx)

write(ky, nvvy)

write(kx, vvx)

write(ky, vvy)

write(kx, nvvx)

write(ky, nvvy)

write(kx, vvx)√

write(ky, vvy)√

write(kx, nvvx)√

write(ky, nvvy)√

Fig. 2 – Algorithm 7 execution within the push/pull semantic model.

The line 8 in Algorithm 7 corresponds to the second row
in Fig. 2. In this section of Algorithm 7, Tm updates its local
copies of the t-variables x and y. It does this by creating the
lists R and W that will be used by the function commitVars,
see line 9 in Algorithm 7. As the result of these updates, the
operations write(kx, nvvx) and write(ky, nvvy) are appended
to Tm’s local log, see the third row in Fig. 2.

The line 9 in Algorithm 7 correspond to the third and the
forth rows in Fig. 2. In this section of Algorithm 7, Tm calls
commitVars(C), which maps to the corresponding PUSH
and CMT rules (two PUSH rules that are shown as a
cascade of two arrows in Fig. 2, and one CMT rule), which
are executed atomically, because the whole Algorithm 4

executes atomically. As the result of the two PUSH rules,
two uncommitted write operations are appended to the
global log G, see G in the fourth row in Fig. 2 (note that the
two new operations are unchecked). Finally, as the result of
the CMT rule, the last two write operations are committed,
see G in the fifth row in Fig. 2.

5.2 (D)PSTM CORRECTNESS CRITERIA PROOFS

In this section we prove that (D)PSTM is serializable by
proving that it’s push/pull semantic model (Definition 2)
satisfies preconditions for the relevant push/pull rules. In
Lemmas 1 to 4, for each precondition, we recall (from [17])
what it requires (in the first sentence), and then prove that
requirement is satisfied (in the second sentence).

Lemma 1. (D)PSTM push/pull model satisfies the
preconditions for APPLY.

Proof. The precondition (i) requires existence of a path in
the program code c1 to the call of the operation m and the
follow-up program code c2. This precondition is satisfied by
the definition of the transactional algorithm T, because
there is a path in T to a write operation m.

The precondition (ii) requires that the operation m is
allowed by the local log L1. This precondition is satisfied by
the definition of sequential specification (see Definition 3)
of L1 and the write operation m.

The precondition (iii) requires that the new operation
with the unique identification id is added to L1. This
precondition is satisfied by the construction of L1. Q.E.D.

Lemma 2. (D)PSTM push/pull model satisfies the
preconditions for PUSH.

Proof. The precondition (i) requires that operation op
may be moved to-the-left of all unpushed operations in L1.
This precondition is satisfied because in the (D)PSTM
push/pull semantic model (see Definition 2) there are no
unpushed operations in L1.

The precondition (ii) requires that all uncommitted
operations in G1, without operations pushed by the current
transaction, can be moved to-the-left (authors of [17] made
a typo and wrote to-the-right) of the current operation op.
This criterion is satisfied because in the (D)PSTM push/pull
semantic model (see Definition 2) there are no
uncommitted operations in G1.

The precondition (iii) requires that the operation op is
allowed by G1. This precondition is satisfied by the
definition of the sequential specification (see Definition 3)
of G1 and the write operation op. Q.E.D.

Lemma 3. (D)PSTM push/pull model satisfies the
preconditions for PULL.

Proof. The precondition (i) requires that the operation op
was not pulled before. This precondition is satisfied by the
definition of the generic (D)PSTM transactional algorithm
T, which requires that each t-variable is pulled just once.

The precondition (ii) requires that the operation op is
allowed by the sequential specification of the local log L.
This precondition is satisfied by the definition of the
sequential specification (see Definition 3) of L and the write
operation op.

The precondition (iii) requires that all the operations
performed by the current transaction can move to-the-right
of the current operation op. This precondition is satisfied
because a transaction makes all its local operations when
preparing the list W for the final commitVars call, and
because t-variables in W are unique, local operations may

428 Formal verification of Python software transactional memories 6

be performed in any order. Q.E.D.

Lemma 4. (D)PSTM push/pull model satisfies the
preconditions for CMT.

Proof. The precondition (i) requires the existence of a
path through a transaction tx c that reaches the stopping
statement skip. This precondition is satisfied by the
definition of the generic (D)PSTM transactional algorithm
T, because it always terminates.

The precondition (ii) requires that transaction’s local log
L1 must be included in the global log G1. This precondition
is satisfied by the definition of L1 and G1 (see Definition 3),
and the construction of the (D)PSTM push/pull semantic
model (see Definition 2).

The precondition (iii) requires that all operations pulled
by the current transactions were pushed by transactions that
meanwhile successfully committed. This precondition is
satisfied because G1 contains only committed operations
(see Definition 2).

The precondition (iv) requires that the global log G1 is
updated to G2 (see predicated cmt) by labeling all the
operations pushed by the current transaction as committed.
This precondition is satisfied by the mapping of the
commitVars call – in case of the successful commit, all the
write operations specified by W are labeled as committed
(see Definition 2). Q.E.D.

Theorem 1 below directly follows from Lemmas 1 to 4
(because the (D)PSTM push/pull semantic model satisfies
preconditions of relevant push/pull rules).

Theorem 1 ((D)PSTM serializability). (D)PSTM is
serializable.

6. CONCLUSIONS

The main original contributions of this paper that may be
utilized by other researchers and practitioners are the
following: (i) the (D)PSTM push/pull semantic model, (ii)
the proofs of the relevant push/pull semantic rules, and (iii)
the way how the model and the proofs have been
constructed.

The advantages of this paper are: (i) this is the first paper
that rigorously applies the methodology based on the
push/pull semantic model proposed in [17] to a real STM,
(ii) this paper may be interesting to other authors because
there is a realistic expectation that the push/pull semantic
model may be widely used for specifying transactional-
based concurrent software, e.g. see [18]. The main
limitation of this paper is that it only proves serializability,
and it does not address liveness properties. Another
limitation of the original paper on push/pull model [17],
and consequently of this paper, is that the proofs were made
manually.

In our near future work, we plan to apply the approach
presented in this paper to other STMs and DSTMs, as well
as to study liveness properties based on the push/pull
model. In the more far future work, we would like to try to
use some tools, such as Maude, Ott, etc., in order to create
executable push/pull semantic models, and to obtain
automatic proofs made by these tools. By providing
automatic proofs we could provide even higher confidence
in the achieved results.

Received on October 14, 2019

REFERENCES
1. M. Herlihy, J. E. B. Moss, Transactional memory: Architectural support

for lock-free data structures, In: Proc. of the 20th Annual
International Symposium on Computer Architecture, pp. 289–300,
ACM New York, NY, USA, 1993.

2. T. Harris, J. R. Larus, R. Rajwar, Transactional Memory, 2nd edition,
Morgan and Claypool, 2010.

3. N. Shavit, D. Touitou, Software transactional memory, In: Proc. of the
14th Annual ACM Symposium on Principles of Distributed
Computing, pp. 204–213, ACM New York, NY, USA, 1995.

4. M. Popovic, B. Kordic, PSTM: Python software transactional memory,
In: Proc. of the 22nd Telecommunications Forum, pp. 1106–1109,
IEEE Xplore, 2014.

5. M. Goldstein, E. Fredj, B. Gerber, A New Hybrid Algorithm for Finding
the Lowest Minima of Potential Surfaces: Approach and
Application to Peptides, Journal of Computational Chemistry, 32,
pp. 1785–1800 (2011).

6. M. Amitay, M. Goldstein, Evaluating the peptide structure prediction
capabilities of a purely ab-initio method, Protein Engineering,
Design and Selection, 30, 10, pp. 723–727 (2017).

7. S. Stoja, S. Vukmirovic, N. Dalcekovic, D. Capko, B. Jelacic,
Accelerating Performance in Critical Topology Analysis of
Distribution Management System Process by Switching from
Monolithic to Microservices, Rev. Roum. Sci. Techn. –
Électrotechn. Et Énerg., 63, 3, pp. 338–343 (2018).

8. R.I. Mogos, C.N. Bodea, M.I. Dascalu, O. Safonkina, E. Lazarou, E.L.
Trifan, I.V. Nemoianu, Technology Enhanced Learning for
Industry 4.0 Enineering Education, Rev. Roum. Sci. Techn. –
Électrotechn. Et Énerg., 64, 4, pp. 429–435 (2018).

9. M. Popovic, B. Kordic, I. Basicevic: Transaction Scheduling for
Software Transactional Memory, In: Proc. of the 2nd IEEE
International Conference on Cloud Computing and Big Data
Analysis, pp. 191–195, IEEE Xplore, 2017.

10. M. Popovic, B. Kordic, M. Popovic, I. Basicevic, Online Algorithms
for Scheduling Transactions on Python Software Transactional
Memory, Serbian Journal of Electrical Engineering, 16, 1, pp. 85–
104 (2019).

11. M. Herlihy, N. Shavit, The art of multiprocessor programming, revised
printing, Morgan Kaufmann.

12. M. Popovic, B. Kordic, M. Popovic, I. Basicevic, A Solution of
Concurrent List on PSTM, In: Proc. of the 5th International
Conference on Electrical, Electronic and Computer Engineering
(IcETRAN), Article RTI2.1, pp. 1–6, ETRAN, Serbia, 2018.

13. M. Popovic, B. Kordic, M. Popovic, I. Basicevic, A Solution of
Concurrent Queue on PSTM, In: Proc. of the 25th IEEE
Telecommunications Forum, pp. 735–738, IEEE Xplore, 2018.

14. M. Popovic, B. Kordic, M. Popovic, I. Basicevic, A Solution of
Concurrent Queue on Local and Distributed Python STM, Telfor
Journal, 11, 1, pp. 64–69 (2019).

15. B. Kordic, M. Popovic, S. Ghilezan, I. Basicevic, An Approach to
Formal Verification of Python Software Transactional Memory,
In: Proc. of the 5th European Conference on the Engineering of
Computer Based Systems, Article No. 13, pp. 1–10, ACM New
York, NY, USA, 2017.

16. A. Liu, M. Popovic, H. Zhu, Formalization and Verification of the
PSTM Architecture, In: Proc. of the 24th Asia-Pacific Software
Engineering Conference, pp. 427–435, IEEE Xplore, 2017.

17. E. Koskinen, M. Parkinson, The Push/Pull Model of Transactions, In:
Proc. of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 186–195, ACM New
York, NY, USA, 2015.

18. T.D. Dickerson, P. Gazzillo, M. Herlihy, E. Koskinen, Proust: A
Design Space for Highly-Concurrent Transactional Data
Structures, Cornell University Library, arXiv:1702.04866v2
[cs.DC] 26 Jun 2017 (2017).

19. C. Xu, X. Wu, H. Zhu, M. Popovic, Modeling and Verifying
Transaction Scheduling for Software Transactional Memory using
CSP. In: Proc. of the 13th Theoretical Aspects of Software
Engineering Symposium, pp. 240–247, IEEE Xplore, 2019.

20. D. Dimitrov, V. Raychev, M. Vechev, E. Koskinen, Commutativity
Race Detection, In: Proc. of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp. 305–
315, ACM New York, NY, USA, 2014.

21. M. Popovic, M. Popovic, S. Ghilezan, B. Kordic, Formal Verification
of Python Software Transactional Memory Serializability Based on
the Push/Pull Semantic Model, In: Proc. of the 6th European
Conference on the Engineering of Computer Based Systems,
Article No. 6, pp. 1–8, ACM New York, NY, USA, 2019.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

