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Both local and distributed Python STMs are targeting a wide range of application domains, including critical infrastructures, 
such as cyber-physical systems, internet of things, etc., and formal verification of such software components is considered 
mandatory. Recently, the push/pull semantic model of transactions has appeared as a solution that unifies a wide range of 
transactional memory algorithms. In this paper, we formally prove that both local and distributed Python STM implementations 
are serializable by constructing their push/pull model and by showing that the push/pull model satisfies the correctness criteria 
for the relevant push/pull semantic rules. The main contributions of the paper are the following: (i) the PSTM and DPSTM 
push/pull semantic model, (ii) the proofs of the relevant push/pull semantic rules, and (iii) the way how the model and the proofs 
have been constructed. 
 

1. INTRODUCTION 

Transactional memory (TM), originally introduced as an 
architectural support for lock-free concurrent data structures 
[1], became a well-known paradigm that aims to replace 
locks with transactions. TM key advantages are: (i) it 
supports higher-level abstraction and composition and thus 
makes parallel programming easier, and (ii) it supports 
speculative (lock-free) transactional execution and thus 
provides better application performance, especially when 
contention among threads is lower [2]. It was not long after 
a software transactional memory (STM) was introduced as 
an implementation of TM in software [3]. 

Python STM (PSTM) [4] is designed as a general-
purpose STM for Python targeting a wide range of 
application domains, from simulations [5, 6] and critical 
infrastructures [7], to data science and enhanced learning 
[8]. As a curiosity, it seems appropriate mentioning that 
PSTM was originally created with the aim to eliminate a 
barrier-like synchronization in a very large Python 
computational-chemistry simulation program for the protein 
structure prediction problem [5, 6]. Since any STM without 
contention management is known to be vulnerable to higher 
concurrency workloads, the online transaction scheduler 
architecture and four scheduling algorithms for scheduling 
transactions on PSTM were developed [9,10] in order to 
lessen this weakness. Additionally, common concurrent 
data structures [11] based on PSTM, such as a concurrent 
list [12], concurrent queue [13], etc., were developed to aid 
easier PSTM-based application development. Finally, the 
first version of distributed PSTM (DPSTM) for applications 
in distributed settings was recently developed [14]. 

Traditionally, the formal verification of software 
components of critical infrastructures is considered 
mandatory. Therefore, PSTM has already been formally 
verified using two independent and complementary 
approaches that are based on timed automata (TA) [15] and 
communicating sequential processes (CSP) [16], 
respectively. Of course, this research remains open for 
application of other formal methods. One particularly 
interesting formalism is the push/pull semantic model of 
transactions [17]. 

In this paper, we formally prove that both (D)PSTM 
(PSTM and DPSTM) implementations are serializable by 
applying the push/pull semantic model. The main motive 
for this paper was to render even better confidence in the 
PSTM correctness by: (i) using this third independent and 
complementary approach (besides TA and CSP), and (ii) by 
introducing (D)PSTM to a wider research community 
familiar with the well-known push/pull semantic model. 

The main original contributions of the paper that may be 
utilized by other researchers and practitioners are the 
following: (i) the (D)PSTM push/pull semantic model, (ii) 
the proofs of the relevant push/pull semantic rules, and (iii) 
the way how the model and the proofs have been 
constructed. Factors that qualify novelty and utility of these 
contributions are the following: (i) this is the first paper that 
tries to rigorously apply the push/pull semantic model to a 
real STM not covered by [17], (ii) although the authors of 
the push/pull semantic model have put a respectable effort 
in defining their model, formalizing and verifying a real 
STM using their approach is far from being trivial, and (iii) 
there is a realistic expectation that the push/pull semantic 
model may be widely used for specifying transactional-
based concurrent software, for example see [18]. 

1.1 RELATED WORK 

PSTM was formalized using TA and analyzed by the 
model checker UPPAAL [15]. PSTM TA-based model 
comprises automata representing a transaction, the PSTM 
queue, and the TM. The three properties that were proved 
are: (i) safety (i.e. atomicity), liveness (at least one of the 
concurrent transactions will commit), and (iii) termination 
(all cyclic transactions eventually complete). 

PSTM was also formalized using CSP, and analyzed by 
the model checker Process Analysis Toolkit (PAT) [16]. 
The lower-level abstraction model comprises processes 
representing a transaction, the Application Programming 
Interface (API), the server, and the system dictionary. The 
three properties that were proved are: (i) deadlock-freedom, 
(ii) ACI (Atomicity, Consistency, Isolation), and (iii) 
optimism (at least one of the concurrent transactions will 
commit). 

The three particular PSTM transaction scheduling 
algorithms (Round Robin, Execution Time Load Balancing, 
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and Avoid Conflicts) from [10] were formalized using the 
process algebra CSP, and analysed by the model checker 
PAT, in order to evaluate them by: (i) verifying the 
properties of deadlock freeness and starvation freeness, and 
(ii) comparing the performance of these three algorithms 
from the perspective of makespan, speedup, aborts, and 
throughput [19]. 

The push/pull semantic model [17] may be used to prove 
serializability of a given STM as follows. Since the 
push/pull semantic model satisfies serializability, one may 
prove that a given STM satisfies serializability by: (i) 
constructing its push/pull model, and (ii) proving that this 
model satisfies respective correctness criteria. Proofs of 
correctness criteria typically involve commutative 
properties of sequential programs [20]. 

A preliminary version of this paper appears in the 
Proceedings of the ECBS 2019 [21]. This paper is the 
extension of [21] that now covers formal verification of 
both PSTM and DPSTM, shortly written as (D)PSTM. 

2. PUSH/PULL SEMANTIC MODEL 

The push/pull model of [17] abstracts the system state 
with a global shared log of the operations that were pushed 
by all the threads, and a per-thread local log of operations 
that were pulled or applied by a thread. The model includes 
the following rules: 

 APPLY(op): apply an operation op to local log. 
 UNAPPLY(op): rewind local log to remove op. 
 PUSH(op): push op to the global log. 
 UNPUSH(op): recall op from the global log. 
 PULL(op): pull op from the global log. 
 UNPULL(op): discard op from the local log. 
 CMT(txn): commit a transaction txn. 

Note that (D)PSTM has only committed operations in the 
global log. 

op1(args1)

op2(args2)

Local log

op1(args1)

op2(args2)

Global log

op3(args3) PUSH op3(args3)

PULL

op4(args4) op4(args4)PUSH

PULL

 
Fig. 1 – A Push/Pull transaction for money transfer. 

Figure 1 illustrates a simple example of a push/pull 
transaction, in particular a push/pull transaction for money 
transfer, which will be used as a running example in this 
paper. The task of this transaction is to realize the payment 
of p euros from the account x to the account y by 
subtracting p euros from x and adding p euros to y. In order 
to realize this task, this transaction conducts the following 
steps: (1) pull the operations op1 and op2 that were used to 
set the current values of transactional variables (t-variables) 
x and y, respectively, (2) apply the operation op3 that sets 
the new value of x to (x – p), (3) apply the operation op4 
that sets the new value of y to (y + p), (4) push the 
operations op3 and op4 from its local log to the global log, 
and (5) commit the transaction, i.e. commit the operations 
op3 and op4 in the global log. 

Next, we briefly recall the rules that will be used to 
model (D)PSTM semantics, and these are: APPLY, PUSH, 

PULL, and CMT [17]. 
Definition 1 (Relevant push/pull rules). The (D)PSTM 

relevant push/pull semantic rules are defined as follows: 

APPLY
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In Definition 1 above, we use the symbol ‘ ’ for the 
left-mover operator, because the symbol ‘◄’ that was used 
in [17] is not available in MS Equation editor. Also, authors 
of [17] made an error in CMT in [17], which we corrected 
here based on their technical report, see [19] in [17]. 

According to authors of [17], correctness criteria for 
push/pull rules define under which conditions these rules 
may be applied; essentially they are the rules’ premises, i.e. 
preconditions. For each rule in Definition 1, its 
preconditions or correctness criteria (these are synonyms) 
are listed above the horizontal line within the rule. 

3. PSTM 

PSTM-based system architecture is a typical client-server 
architecture written in Python [4]. Transactions (clients) 
request services from PSTM (server) by calling PSTM API 
functions. PSTM serves these requests by managing the 
dictionary of shared t-variables, D (like a global log in the 
push/pull model). Transactions’ requests are sent to PSTM 
over the FIFO queue, q, where they get serialized. 

A PSTM transaction typically gets its local t-variable 
copies (like a local log in the push/pull model), does some 
processing, including updating some local t-variable copies, 
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and finally commits all its operations on shared t-variables. 
Informally, PSTM is serializable because it serves all the 
requests atomically. The following two definitions are from 
[21]: 

“A dictionary item is a pair (ikey, ival), where ikey and 
ival are its key and value, respectively. We write the item 
read operation as: D[ikey] or read(ikey), and the item write 
operation as: D[ikey] := ival or write(ikey, ival). 

A t-variable is a tuple (key, ver, val), where key, ver, and 
val are t-variable key, version, and value, respectively. A t-
variable (key, ver, val) is stored as the item (key, (ver, val)) 
in the system dictionary, thus item’s ikey and ival are equal 
to ikey  = key and ival = (ver, val).” 

The main functions provided by PSTM API are the 
following: 

 addVars(q, K) / v 
 putVars(q, W) / v 
 getVars(q, K) / V 
 commitVars(q, C) / v 

The argument q is the PSTM queue. The argument K is a 
list of t-variable keys. The argument W is the list of t-
variables to be written. The argument C is a list [R, W], 
where R and W are read and write lists of t-variables, 
respectively. For more details on PSTM API, see [21]. 

As already mentioned, PSTM server process serves 
PSTM API calls sequentially, by calling its internal 
functions with the same name but without the first 
argument q. The pseudocodes of these internal functions are 
given in Algorithms 1 to 4, respectively. 

 
Algorithm 1: The PSTM server function addVars. 
1: addVars(K) 
2:   for k in K 
3:     D[k] := (0, none) 
4:   return ‘yes’ 

 
Algorithm 2: The PSTM server function putVars. 
1: putVars(W) 
2:   return commitVars([ [], W ]) 

 
Algorithm 3: The PSTM server function getVars. 
1: getVars(K) 
2:   V := []  // set V to the empty list 
3:   for k in K 
4:     vv := D[k] 
5:     if vv = none then v := (false, none) 
6:     else v := (true, vv) 
7:     V := V + v  // append v to V 
8:   return V 

 
Algorithm 4: The PSTM server function commitVars. 
1: commitVars(q, C) 
2:   R, W := C 
3:   if for all t in (R union W). t.ver = D[t.key].ver then 
4:     for w in W 
5:       write( w.key, (D[w.key].ver + 1, w.val) ) 
6:     return ‘yes’  // a transaction got committed 
7:   else 
8:     return ‘no’  // a transaction got aborted 

4. DPSTM 

Like PSTM-based system architecture, DPSTM-based 
system architecture is also a client-server type of 
architecture [14]. The main difference between these two 
architectures is that the former architecture supports 
centralized applications comprising transactions that 
execute on a single multicore machine, whereas the latter 

architecture supports distributed applications comprising 
transactions that execute on different machines in a 
network. Since in a DPSTM-based system, transactions and 
DPSTM execute on different machines, transactions use 
their proxies (also known as DPSTM clients) to request 
service from DPSTM. 

A typical hardware infrastructure of a DPSTM-based 
system is a computer network, such as Internet, which is 
used to connect remote processors (computers, mobile 
phones, Internet of Things, etc.) to a server computer. The 
former hosts distributed application processes comprising 
transactions and their proxies, whereas the latter hosts 
DPSTM. Since DPSTM is targeting critical infrastructures, 
the proxies and DPSTM server process communicate over 
an authentication-secured connection. 

DPSTM-based system architecture was designed as an 
extension of PSTM-based system architecture. DPSTM 
maintains the same system dictionary of shared t-variables, 
D, as PSTM. Each t-variable (key, ver, val) is again stored 
in D as a pair (ikey, ival), where ikey is equal to key and ival 
is equal to (ver, val). DPSTM supports the same set of 
operations on D (addVars, putVars, etc), and it performs 
these operations atomically, which is the key idea that 
provides serializability of both architectures. Similarly, 
DPSTM transactions have the same behavior, i.e. the same 
lifecycle, as PSTM transactions – they get their copies of t-
variables at the beginning, do local processing, and update 
modified t-variables at the end. 

The architectural extension is made by introducing 
proxies, which transparently connect transactions to 
DPSTM, such that transactions are not aware that they and 
DPSTM execute in different machines – transactions call 
operations on proxies, which simply delegate these 
operations to DPSTM. 

DPSTM was designed to have the API with the same 
semantics as PSTM API in order to enable easy porting of 
already developed PSTM based software components, such 
as concurrent data structures, to DPSTM. The only 
difference between the PSTM API and the DPSTM API is 
their different syntax – the former is functional (i.e. 
procedural), whereas the latter is object-oriented. More 
precisely, PSTM API is defined as a set of stm.py module’s 
functions, whereas DPSTM API is defined as a set of proxy 
object’s functions. All the PSTM API functions have their 
equivalents within the DPSTM API. 

The main syntactical difference between PSTM and 
DPSTM APIs is in the syntax of API function calls. Each 
PSTM API function has the PSTM queue as its first 
argument and is called as a simple (Python module) 
function, whereas the equivalent DPSTM API function 
does not have the queue argument and is called on a proxy 
object (that hides the network communication and the 
DPSTM queue). More formally, the PSTM API function 
call f(q, args) is equivalent to the DPSTM API function call 
p.f(args), where q is the PSTM queue, args are other 
arguments of the API function f, and p is the proxy object. 
In both cases, the function f returns the same return value r. 

The DPSTM API is supported by both the transaction 
proxy object and the DPSTM object. However, the 
implementations of the DPSTM API within these two 
objects are different. The transaction proxy object’s 
functions simply delegate their work to the DPSTM 
object’s functions with the same name (by calling the 
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function with the same name on the DPSTM object, passing 
it the arguments, and returning it’s return value), which in 
their turn perform the required operations on D. 

In order to simplify the formalization of DPSTM-based 
system architecture, we assume that DPSTM API 
implementation within the DPSTM (object) is defined by 
the Algorithms 1 to 4, and that calls to DPSTM API 
functions on the DPSTM object map to the corresponding 
functions in Algorithms 1 to 4. Then, the DPSTM API 
implementation within the transaction proxy object is given 
in Algorithm 5, where dpstm is the DPSTM object (in 
Python this is a remote customized manager type of object). 

 
Algorithm 5: The DPSTM API exported by a proxy object. 
dpstm  // dpstm is the DPSTM object 
 
1: addVars(K) 
2:   return dpstm.addVars(K) 
 
3: putVars(W) 
4:   return dpstm.putVars(W) 
 
5: getVars(K) 
6:   return dpstm.getVars(K) 
 
7: commitVars(C) 
8:   return dpstm.commitVars(C) 

5. FORMAL VERIFICATION 

As explained in Section 4, DPSTM is an extension of 
PSTM for distributed settings, which was designed such 
that: (i) DPSTM and PTSM transactions have the same 
behavior, (ii) DPSTM and PSTM APIs have the same 
semantics, and (iii) DPSTM and PSTM servers provide the 
same operations with the same semantics. Therefore, quite 
naturally, DPSTM and PSTM share the common push/pull 
semantic model, called the (D)PSTM push/pull model. 

5.1 (D)PSTM PUSH/PULL SEMANTIC MODEL 

This section of the paper presents the (D)PSTM 
push/pull semantic model using the DPSTM API syntax. 
Definition adapted from [21]: “The generic (D)PSTM 
transactional algorithm T is defined as a block of code that 
starts with a getVars operation, which pulls each t-variable 
only once, performs local processing including updating 
local copies of t-variables, ends with a commitVars 
operation, and always terminates, see Algorithm 6.” 

 
Algorithm 6: The generic (D)PSTM transactional algorithm T. 
1: T(K) 
2:   V := dpstm.getVars(K) 
3:   Do local processing and update (write) local copies of t-variables. 
4:   v := dpstm.commitVars(C) 

 
Note on Algorithm 6: This algorithm generalizes to an 

arbitrary transaction with an arbitrary number of getVars 
and commitVars, in an arbitrary order, but for brevity we 
use this simplest transactional algorithm in this paper. 

Definition adapted from [21]: “Definition 2 ((D)PSTM 
push/pull semantic model). The (D)PSTM push/pull 
semantic model is a mapping of operations within the 
generic transactional algorithm T to the corresponding 
push/pull rules, denoted as function sm, which is defined in 
the following three sub-definitions: 

Definition 2.1 (Mapping of line 2 in Algorithm 6): The 
getVars(K) call maps as follows. For each k in K, the read 

D[k] (line 4 in Algorithm 3) maps to the PULL rule related 
to the latest write operation from the global log G that was 
used to set D[k] (line 5 in Algorithm 4). So, getVars(K) call 
maps to |K| PULL rules, where |K| is the size of K. 

Definition 2.2 (Mapping of line 3 in Algorithm 6): The 
updates of local t-variable copies (write operations) map to 
APPLY rules, one per each write. 

Definition 2.3 (Mapping of line 4 in Algorithm 6): The 
commitVars(C) call maps as follows. For each t-variable w 
in W, the corresponding write operation (line 5 in 
Algorithm 4) maps to the PUSH rule related to that write 
operation. The end of the for-loop in line 4, in Algorithm 4, 
maps to the CMT rule. So, commitVars(C) maps to |W| 
PUSH rules and one CMT rule altogether.” 

In order to clarify Definition 2, let’s write the algorithm 
T as the sequence (list) of functions: Ti = [f1, f2, f3], where 
f1 is getVars(K), f2 is update(K), and f3 is commitVars(C); 
the function update updates local copies of t-variables in K. 
For simplicity, let’s assume that K has a single element k. 
Then the function sm maps over Ti to produce the sequence 
of rules To = sm(Ti) = [r1, r2, r3], where r1 = sm(f1) = PULL, 
r2 = sm(f2) = APPLY, and r3 = sm(f3) = PUSH, CMT. 

Definition adapted from [21]: “Definition 3 (Sequential 
specification of logs). Both local and global logs are logs of 
chronologically ordered write operations with a sequential 
specification defined such that getVars([k]) call pulls the 
last write to D[k] and that any read within the local 
processing evaluates to the value written by the last write.” 

Next we use the running example of a money transfer 
transaction as an instance Tm of Algorithm 6, shown in 
Algorithm 7, in order to illustrate the execution of the 
algorithm T. 

Figure 2 illustrates the execution of Algorithm 7 within 
the push/pull semantic model. The left side shows the local 
log Lm of a transaction Tm (executing the algorithm Tm), the 
middle side shows the global log G, and the right side 
shows transitions. Rows show the current state and the next 
event. The evolution of the system proceeds downwards. 
Boxes in logs correspond to operations. Checked operations 
in the global log are committed. 

The variables used in Algorithm 7 and in Figure 2 are the 
following. The input parameters of Tm are: K is the list of 
keys for the t-variables x and y, K = [ kx, ky ] and p is the 
payment (amount of money to be transferred from x to y). 
The variables V, (e, vv), W, and R, are explained in Section 
3. Recall that vv = (ver, val). The terms vv.ver and vv.val 
are equal to the vv’s elements ver and val, respectively, So, 
vvx.val and vvy.val are the input values of the t-variables x 
and y, respectively. The variables nvx and nvy are the output 
(new) values of x and y, respectively (after the money 
transfer). The variables nvvx and nvvy are the output (new) 
vv tuples for x and y, respectively. 

The lines 1 to 3 in Algorithm 7 n nn correspond to the 
first row in Fig. 2. In this section of Algorithm 7, the 
transaction Tm calls getVars(K), see line 3 in Algorithm 7, 
which maps to the two PULL rules (these two rules are 
shown as a cascade of two arrows in Fig. 2) and results in 
pulling the operations write(kx, vvx) and write(ky, vvy), 
where vvx and vvy are the tuples (verx, valx) and (very, valy), 
which contain the version and the value of the t-variables x 
and y (with the keys kx and ky), respectively. Note that the 
pulled operations appear in the local log Li in the second 
row in Fig. 2. 



5 Marko Popovic et al. 427 

 
The lines 4 to 7 in Algorithm 7 do not have a 

corresponding part in Fig. 2. In this section of Algorithm 7, 
Tm does its local processing in order to determine the output 
values of t-variables x and y (nvx and nvy). 

 
Algorithm 7: The instance of the algorithm T (money transfer). 
1: Tm(K, p)    // assume K = [ kx, ky ] 
2:   kx := K[0], ky := K[1] 
3:   V := dpstm.getVars(K ) 
4:   (ex, vvx) := V[0] 
5:   (ey, vvy) := V[1] 
6:   nvx := vvx.val – p 
7:   nvy := vvy.val + p 
8:   W := R := [ (kx, vvx.ver, nvx), (ky, vvy.ver, nvy) ] 
9:   v := dpstm.commitVars([R, W] ) 

 
Lm

write(kx, vvx) √

G

getVars(q, K)

Lm

write(kx, vvx)√

G

APPLY(write(kx, nvvx))

Local processing

Lm

write(kx, vvx)√

G

PUSH(write(kx, nvvx))

Line 5, Algorithm 4

write(kx, vvx) 

write(ky, vvy)

Lm G

CMT(txn)

End of Line 4, Algorithm 4

Lm G

Note:
Sequence of PUSH 
and CMT transitions 
executes atomically

PULL(write(kx, vvx))

(see Line 3, Algorithm 7)

(see Line 8, Algorithm 7)

(see Line 9, Algorithm 7)

(see Line 9, Algorithm 7)

write(ky, vvy) √ PULL(write(ky, vvy))

write(ky, vvy)√ APPLY(write(ky, nvvy))

write(kx, vvx) 

write(ky, vvy)

write(kx, nvvx) 

write(ky, nvvy)

write(ky, vvy)√ PUSH(write(ky, nvvy))

write(kx, vvx) 

write(ky, vvy)

write(kx, nvvx) 

write(ky, nvvy)

write(kx, vvx)√

write(ky, vvy)√

write(kx, nvvx)

write(ky, nvvy)

write(kx, vvx) 

write(ky, vvy)

write(kx, nvvx) 

write(ky, nvvy)

write(kx, vvx)√

write(ky, vvy)√

write(kx, nvvx)√

write(ky, nvvy)√
 

Fig. 2 – Algorithm 7 execution within the push/pull semantic model. 

The line 8 in Algorithm 7 corresponds to the second row 
in Fig. 2. In this section of Algorithm 7, Tm updates its local 
copies of the t-variables x and y. It does this by creating the 
lists R and W that will be used by the function commitVars, 
see line 9 in Algorithm 7. As the result of these updates, the 
operations write(kx, nvvx) and write(ky, nvvy) are appended 
to Tm’s local log, see the third row in Fig. 2. 

The line 9 in Algorithm 7 correspond to the third and the 
forth rows in Fig. 2. In this section of Algorithm 7, Tm calls 
commitVars(C), which maps to the corresponding PUSH 
and CMT rules (two PUSH rules that are shown as a 
cascade of two arrows in Fig. 2, and one CMT rule), which 
are executed atomically, because the whole Algorithm 4 

executes atomically. As the result of the two PUSH rules, 
two uncommitted write operations are appended to the 
global log G, see G in the fourth row in Fig. 2 (note that the 
two new operations are unchecked). Finally, as the result of 
the CMT rule, the last two write operations are committed, 
see G in the fifth row in Fig. 2. 

5.2 (D)PSTM CORRECTNESS CRITERIA PROOFS 

In this section we prove that (D)PSTM is serializable by 
proving that it’s push/pull semantic model (Definition 2) 
satisfies preconditions for the relevant push/pull rules. In 
Lemmas 1 to 4, for each precondition, we recall (from [17]) 
what it requires (in the first sentence), and then prove that 
requirement is satisfied (in the second sentence). 

Lemma 1. (D)PSTM push/pull model satisfies the 
preconditions for APPLY. 

Proof. The precondition (i) requires existence of a path in 
the program code c1 to the call of the operation m and the 
follow-up program code c2. This precondition is satisfied by 
the definition of the transactional algorithm T, because 
there is a path in T to a write operation m. 

The precondition (ii) requires that the operation m is 
allowed by the local log L1. This precondition is satisfied by 
the definition of sequential specification (see Definition 3) 
of L1 and the write operation m. 

The precondition (iii) requires that the new operation 
with the unique identification id is added to L1. This 
precondition is satisfied by the construction of L1. Q.E.D. 

Lemma 2. (D)PSTM push/pull model satisfies the 
preconditions for PUSH. 

Proof. The precondition (i) requires that operation op 
may be moved to-the-left of all unpushed operations in L1. 
This precondition is satisfied because in the (D)PSTM 
push/pull semantic model (see Definition 2) there are no 
unpushed operations in L1. 

The precondition (ii) requires that all uncommitted 
operations in G1, without operations pushed by the current 
transaction, can be moved to-the-left (authors of [17] made 
a typo and wrote to-the-right) of the current operation op. 
This criterion is satisfied because in the (D)PSTM push/pull 
semantic model (see Definition 2) there are no 
uncommitted operations in G1. 

The precondition (iii) requires that the operation op is 
allowed by G1. This precondition is satisfied by the 
definition of the sequential specification (see Definition 3) 
of G1 and the write operation op. Q.E.D. 

Lemma 3. (D)PSTM push/pull model satisfies the 
preconditions for PULL. 

Proof. The precondition (i) requires that the operation op 
was not pulled before. This precondition is satisfied by the 
definition of the generic (D)PSTM transactional algorithm 
T, which requires that each t-variable is pulled just once. 

The precondition (ii) requires that the operation op is 
allowed by the sequential specification of the local log L. 
This precondition is satisfied by the definition of the 
sequential specification (see Definition 3) of L and the write 
operation op. 

The precondition (iii) requires that all the operations 
performed by the current transaction can move to-the-right 
of the current operation op. This precondition is satisfied 
because a transaction makes all its local operations when 
preparing the list W for the final commitVars call, and 
because t-variables in W are unique, local operations may 
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be performed in any order. Q.E.D. 

Lemma 4. (D)PSTM push/pull model satisfies the 
preconditions for CMT. 

Proof. The precondition (i) requires the existence of a 
path through a transaction tx c that reaches the stopping 
statement skip. This precondition is satisfied by the 
definition of the generic (D)PSTM transactional algorithm 
T, because it always terminates. 

The precondition (ii) requires that transaction’s local log 
L1 must be included in the global log G1. This precondition 
is satisfied by the definition of L1 and G1 (see Definition 3), 
and the construction of the (D)PSTM push/pull semantic 
model (see Definition 2). 

The precondition (iii) requires that all operations pulled 
by the current transactions were pushed by transactions that 
meanwhile successfully committed. This precondition is 
satisfied because G1 contains only committed operations 
(see Definition 2). 

The precondition (iv) requires that the global log G1 is 
updated to G2 (see predicated cmt) by labeling all the 
operations pushed by the current transaction as committed. 
This precondition is satisfied by the mapping of the 
commitVars call – in case of the successful commit, all the 
write operations specified by W are labeled as committed 
(see Definition 2). Q.E.D. 

Theorem 1 below directly follows from Lemmas 1 to 4 
(because the (D)PSTM push/pull semantic model satisfies 
preconditions of relevant push/pull rules). 

Theorem 1 ((D)PSTM serializability). (D)PSTM is 
serializable. 

6. CONCLUSIONS 

The main original contributions of this paper that may be 
utilized by other researchers and practitioners are the 
following: (i) the (D)PSTM push/pull semantic model, (ii) 
the proofs of the relevant push/pull semantic rules, and (iii) 
the way how the model and the proofs have been 
constructed. 

The advantages of this paper are: (i) this is the first paper 
that rigorously applies the methodology based on the 
push/pull semantic model proposed in [17] to a real STM, 
(ii) this paper may be interesting to other authors because 
there is a realistic expectation that the push/pull semantic 
model may be widely used for specifying transactional-
based concurrent software, e.g. see [18]. The main 
limitation of this paper is that it only proves serializability, 
and it does not address liveness properties. Another 
limitation of the original paper on push/pull model [17], 
and consequently of this paper, is that the proofs were made 
manually. 

In our near future work, we plan to apply the approach 
presented in this paper to other STMs and DSTMs, as well 
as to study liveness properties based on the push/pull 
model. In the more far future work, we would like to try to 
use some tools, such as Maude, Ott, etc., in order to create 
executable push/pull semantic models, and to obtain 
automatic proofs made by these tools. By providing 
automatic proofs we could provide even higher confidence 
in the achieved results. 

Received on October 14, 2019 
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