
Rev. Roum. Sci. Techn.– Électrotechn. et Énerg.
Vol. 61, 1, pp. 84–88, Bucarest, 2016

1 Brno University of Technology, Department of Telecommunications, Faculty of Electrical Engineering and Communication, Czech Republic,
xfujdi00@stud.feec.vutbr.cz.

2 Escola Superior Politècnica, TCM1 planta 2 Despatx num. 9 / TCM3 planta 6 CTT, Fundació TecnoCampus Mataró-Maresme, 08302 Mataró, Spain

CRYPTOGRAPH KEY DISTRIBUTION WITH ELLIPTIC CURVE
DIFFIE-HELLMAN ALGORITHM IN LOW-POWER DEVICES

FOR POWER GRIDS

RADEK FUJDIAK1, JIRI MISUREC1, PETR MLYNEK1, LEONARD JANER2

Key words: Low-power device, Cryptography, Elliptic curves, Finite field, Prime field, Binary field, Key distribution,
Power grid, Diffie-Hellman algorithm.

Power grid networks, that use symmetric ciphers for secured communication, need some system for key
distribution. It might be a special secured channel or a method which allows key-distribution via public channel.
The public channel method could be done with asymmetric ciphers, but the growing computing and power
requirements of modern ciphers are problematic for low-power devices, which are used in this kind of networks
and which should provide sufficient security for communication. This article deals with the implementation of the
Diffie-Hellman algorithm over elliptic curves for ultra-low-power devices, used in power grid and smart grid
networks. The algorithm uses elliptic curves over the prime field. Our method might be used for key-distribution
via public channels without any other equipment or devices.

1. INTRODUCTION

Elliptic curve cryptography (ECC) was first introduced
by N. Koblitz [1] and V. Miller [2]. ECC is today an
independent scientific field, which starts from asymmetric
cryptography (the public key cryptography). The security
of ECC is based on the elliptic curve discrete logarithm
problem (ECDL) [3]. The plane curve over a finite field
(Galois field) algebra is used (more about finite field algebra
in [4]). Compared with public-key cryptography the ECC
offers smaller key-size with the same security level (Table 1
[5]). This is an advantage in particular for applications with
limited resources.

Table 1
ECC and Rivest-Shamir-Adleman algorithm (RSA)

key-size NIST comparison

Symmetric key-size
[bits]

ECC key-size
[bits]

Asymmetric key-size
[bits]

80 160 1024
112 224 2048
128 256 3072
192 384 7680
256 512 15360

There exist many software implementations and libraries
of ECC for devices with non-limited resources (Crypto++
[6], OpenSSL [7], Bouncy castle [8], FlexiProvider [9], and
many others), but those with limited resources are in a
different situation. Different platform architectures, limited
memory and limited computing power are usually the main
problem as regards compatibility with common libraries.
The works in this field concentrate on ECC tests on 8/16/32
bit [10–12] low-power microcontrollers. These works mostly
provide solution for low-size key with ECC. Current work
[13, 14] concentrate on the new Curve25519 (more about
this curve in [15]). These works try to provide the fastest
possible solution or implementation, which might be used
for low-power devices. This could be a solution for networks
or places where the time is crucial (sensor networks,

wireless networks) and where, for example, key-establish-
ment is performed repeatedly. Power grid networks only
need sufficient speed, but here the memory requirements or
the final memory requirements of the implementation with
a concrete cryptosystem are also very important, because
the memory is also used for the data correction, com-
munication protocols, data collection, etc.

Fig. 1 – Power grid network for remote data acquisition [21].

In [10–14] the memory tests are missing, the same as
tests with a concrete cryptosystem. In our article, we focus
on the security between the measuring point and the data
concentrator in the power grid network. Figure 1 shows our
concrete network, where the Intelligent Communication
Unit belongs to the MSP430 low-power devices family
(PLC – power line communication, WAN – wide area
network, GSM – mobile communication, ADSL – asymmetric
digital subscriber line, RS485 – serial link). We try to
implement with this microcontroller the concrete full-size
secured elliptic curves from a different kind of standards
(e.g. National Institute of Standards and Technology –

2 Elliptic curve Diffie-Hellman algorithm in low-power devices

85

NIST [16], Standards for Efficient Cryptography – SEC
[17], Standard for HASH function and signature – ANSI
[18], Wireless transport layer security standards – WTLS
[19]). These curves could be used for Advanced Encryption
Standards (AES) key-establishment with the elliptic curve
Diffie-Hellman cryptosystem (ECDH) [20]. We provide
experimental measurement from the time and the memory
points of view.

Our previous work has provided a random number
generator for cryptography on low-power devices [22], big
number representation and arithmetic for low-power devices
[23] and also elliptic curves over binary field for low-
power devices [24]. This article shows our latest work with
prime field curves and also a comparison with our previous
work with binary field curves. The article is divided into
the following parts: experimental background and presets
(where we give all the necessary information that was used
for our experiment and implementation), experimental results
(commented results are shown), discussions (answering the
impact value question of our research), and conclusions.

2. EXPERIMENTAL BACKGROUND AND PRESETS

We used the MSP430f5438A ultra-low-power micro-
controller from Texas Instruments. Its strong points are real-
time capability with ultra-low-power consumption, digitally
controlled oscillator (DCO) stability, stack processing
capability, application operating modes, no external crystal
need, low wake-up time (less than 5 μs), 16-bit operations,
up to 32 MHz crystals, 32-bit hardware multiplier, 256 Kb
FLASH, 16 kB RAM and 16-bit registers (all these are the
main attributes for our problematic more about MSP430 in
[25]). The microcontroller presets for the experiment were:
the digital controlled oscillator was used as the source for
CPU. We used default DCO frequency ~1 MHz. That
means ~100 ns for one single cycle (Tcycle = 1/fCPU). Vcc was
3000 mV and the operating mode was active mode (AM).
The Icc was 300 μA for our Vcc and fCPU.

Texas Instruments has its own development software for
their devices based on eclipse core, namely the code
composer studio (CCS). We worked with CCS version 5.2.
CCS* also has its own options for software compilation,
which impact on the final results of measurement. Our
presets for CCS were as follow: for the processor setup we
used the mspx silicon version (20 bits wide for registers
and buses), the application binary interface coffabi (the
coffabi shows in the settings better memory requirements in
tens of a percentage point compared with the eabi binary
interface), large model for data and code (this allows
placing the data and code anywhere in flash memory) while
the indication of near data was not used. The debug model
was a full symbolic debug and the full optimization in the
presence of debug directives was on (these settings allow
good debugging, but they could also impact a little bit on
the size or the speed). No special software optimization
options or advanced optimization options were used. The
msp430f5438.h library was used for the registers and basic
microcontroller settings.

The elliptic curves (EC) over finite field were chosen for
their relatively simple computation and small key-size,

* http://www.ti.com/tool/CCSTUDIO

which is critical for low-power devices such as MSP430.
The elliptic curve cryptography mostly uses finite fields.
There are two basic types of EC finite fields, i.e. prime
field curves (GFp) and binary field curves (GF2m). The EC
over binary field should be simpler than prime field curves,
but with devices that have a good hardware multiplier and a
good CPU the prime field curves should be much faster.
Based on elliptic curves, the elliptic curve Diffie-Hellman
was chosen as the key-distribution algorithm. The algorithm is
based on discrete logarithm problem and has been developed
for key-distribution purpose.

We worked with cryptographic OpenSSL libraries (openssl-
fips-ecp-2.0.6 [7], openssl-fips-ecp-2.0.7 [7] and openssl-
1.0.1i [7]). Their algorithms are written in the C Language
(this was also a precondition for simpler imple-mentation
and future compatibility among different micro-controller
version and other platform versions (PC)). The concept,
name of the headers, functions and files stayed the same or
at least very similar. This should provide for a transparent
code and also a better compatibility with the original libraries.
The used libraries provide the following 27 prime-field
curves [7]:
• Fp112: secp112r1, secp112r2,

wap_wsg_idm_ecid_wtls6, wap_wsg_idm_ecid_wtls8.
• Fp128: secp128r1, secp128r2.Fp160: secp160k1,

secp160r1, secp160r2, wap_wsg_idm_ecid_wtls7,
wap_wsg_idm_ecid_wtls9.

• Fp192: secp192r1, secp192k1, X9_62_prime192v1,
X9_62_prime192v2, X9_62_prime192v3.

• Fp224: secp224k1, secp224r1, secp224r2,
wap_wsg_idm_ecid_wtls12.

• Fp239: prime239v1, X9_62_prime239v2,
X9_62_prime239v3.

• Fp256: secp256k1, X9_62_prime256v1.
• Fp384: secp384r1.
• Fp521: secp521r1.
These curves are recommended by different kinds of the

standards SECG (Standards for Efficient Cryptography
Group), WTLS (Wireless Transport Layer Security), NIST
(National Institute of Standards and Technology) or ANSI
X9.62 (standard for HASH and signatures). All these curves
were also implemented in the microcontroller. These curves
use the non-adjective form of multiplication (w-NAF function),
where it is first necessary to compute the multiplicand n of
Q = nP (Algorithm 1), where Q and P are points on the
elliptic curve and the n is scalar multiplicand.

i = 0
while (n > 0) do
 if ((n mod 2) == 1) then
 ni = n mod 2W
 n -= ni
 else
 ni = 0
 n /= 2
 i++
return (ni-1, ni-2, ... n0)
Algorithm 1 – w-NAF algorithm (computation of d multiplicand)

The modulo function is defined as follow Algorithm 2:
if ((n mod 2W) >= (2W-1))
 return ((n mod 2W) – 2)
 else
 return (n mod 2W)
Algorithm 2 – w-NAF algorithm (the modulo function definition)

 Radek Fujdiak, Jiri Misurec, Petr Mlynek, Leonard Janer 3

86

and the nP point multiplication is in Algorithm 3:
Q = 0
for (j = i-1 down to 0) do
 Q *= 2
 if (nj != 0)
 Q = Q + njP
return Q

Algorithm 3 – w-NAF algorithm (final dP multiplication)

For the curve computation purpose, the three main different
functions were implemented.

The first function is ec_gfp_simple_meth. It is a basic
function for curve representation, it contains the simplest
possible algorithms and it is also the lowest common deno-
minator implementation for the prime field curves. Two
other functions ec_gfp_mont_meth and ec_gfp_nist_meth,
use this simple function as their starting point.

The ec_gfp_mont_meth adding the Montgomery multi-
plication and methods to the following functions:
• group_init (initialization function for curves)
• group_finish (ending function)
• group_clear_finish (clearing the group of curves)
• group_copy (copying the group of curves)
• group_set_curve (choosing the concrete curves)
• field_mul (field multiplication)
• field_sqr (field squaring)

• field_encode (field encoding)
• field_decode (field decoding)

and
• field_set_to_one (special function for internal purposes).

This Montgomery implementation should optimize the
rather difficult computation functions.

The ec_gfp_nist_meth optimizes the computation process
with the NIST standard. This function is only for the NIST
standardized functions and it optimizes the following functions:
group_copy group_set_curve, field_mul and field_sqr.

3. EXPERIMENTAL RESULTS

For low-power-devices the important attributes for real-
event implementation are not only speed but also memory
requirements. The speed impacts on the time that the
microcontroller needs to be awake in the active mode. This
is critical for the battery lifetime.

Another problem is that in the time of hard computation
it is not possible to use the microcontroller for anything
else (for example communication, data sending, etc.).

The memory size impacts on what we will still be able to
implement into the microcontroller. If the memory is fully
filled, it will not be possible to implement another mechanism
for communication, data storage or any other purpose.

Table 2
Number of cycles for different kinds of curves (only one-side operation)

Curve Name Type Number of cycles
(gfp_mont)

Number of cycles for
whole ECDH Heap Size [B] Standard

secp112r1 Fp112 139  276 271  675 2  219 SECG/WTLS
secp112r2 Fp112 161  508 311  511 2  219 SECG

wap_wsg_idm_ecid_wtls6 Fp112 155  225 286  675 2  219 SECG/WTLS
wap_wsg_idm_ecid_wtls8 Fp112 154  206 348  474 2  219 WTLS

secp128r1 Fp128 171  116 313  053 2  219 SECG
secp128r2 Fp128 183  768 331  110 2  219 SECG
secp160k1 Fp160 213  400 375  573 2  425 SECG
secp160r1 Fp160 184  673 331  379 2  450 SECG
secp160r2 Fp160 197  593 331  520 2  470 SECG/WTLS

wap_wsg_idm_ecid_wtls7 Fp160 184  404 331  152 2  470 SECG/WTLS
wap_wsg_idm_ecid_wtls9 Fp160 277  533 510  505 2  470 WTLS

secp192k1 Fp192 335  016 411  531 2  550 SECG
X9_62_prime192v1

secp192r1 Fp192 359  441 451  296 2  650 NIST/X9.62/SECG

X9_62_prime192v2 Fp192 317  978 433  735 2  645 X9.62
X9_62_prime192v3 Fp192 342  049 441  291 2  665 X9.62

secp224k1 Fp224 435  447 540  010 2  800 SECG
secp224r1 Fp224 382  366 486  052 2  825 NIST/SECG

wap_wsg_idm_ecid_wtls12 Fp224 376  861 484  792 2  800 WTLS
X9_62_prime256v1

secp256r1 Fp256 506  953 611  219 2  905 X9.62/SECG

The requirements for memory include the big number

arithmetic and representation, the cryptographic secure
random number generator, the elliptic curve cryptography
(prime and binary fields), the three computation methods
(simple, NIST and Montgomery) and the ECDH crypto-
system. The RAM memory requirements are 4291 kB
(26 %), the FLASH memory requirements are 58kB (23 %).

The RAM only contains the necessary parts of the
program and configuration, because in our settings (large-
code model) we use primarily the FLASH memory for data
(non-text section as .reset, .const) and text (text section as
code and C-assembled libraries).

The stack for the whole concept was constantly 1 kB.
The heap size for the curves changed with the growing
key-size (Table 2). The main measurement is given in
Table 2. It is given the heap size, curve standardization,
final speed requirements for single curves and also for the
implemented ECDH cryptosystem with these curves.

The Table 2 is only for the gfp_mont_meth. The gfp_
simple_meth should be used only for the simplest curves.

The gfp_nist_meth was also tested for the NIST curves
but the attributes were mostly worse than the Montgomery
implementation.

4 Elliptic curve Diffie-Hellman algorithm in low-power devices

87

In the example with the secp224r1 curve, the computing
requirement was 1.3 million cycles higher than with the
gfp_mont_meth and the heap size requirement was 400 B
lower (in general the NIST function is much slower and it
has lower memory requirements).

The comparison of the heap size in our solution with
binary field curves (for different key-sizes) is shown in
Figure 2. The heap size requirements of the prime field are
really similar compared with the binary field. The heap size
would not be the main reason for choosing the prime field
curves in the low power microcontroller. The time re-
quirement comparison of the prime field with binary field
curves (with different key-sizes) is shown in Figure 3.

The main parameters of the implemented prime field
elliptic curve secp256r1 might be found in [16] as NIST
P-256 curve.

Fig. 2 – The heap size based on key-size for different kinds of field.

Fig. 3 – The time requirements based on key-size

for different kinds of field.

4. DISCUSSION

The important attributes for the real events and environ-
ments are the speed and the memory requirements. As
described previously the speed is important, because, for
example, in power grids the speed of the cryptography
algorithm for securing the communication impacts on the
delay until the two sides can communicate.

The memory requirements, on the other hand, have an
impact on the possibilities to implement communication
protocols, etc.

Compared with binary field curves, our results with
prime field implementation show better attributes, both in
speed and also in memory requirements. Compared with
other works, we provide secured 256-bit elliptic curve for

ECDH (or a different algorithm). Our best resulted curve is
standardized by the SECT and X.92 standards.

The 256 key-size of elliptic curve corresponds to the
AES−128 (which were chosen for communication). The
AES−128 should be sufficient till 2030+, the same as the
implemented 256-bit curve [26].

Not many solutions with a 256-bit curve for limited
resources are provided; for this problematic there exist two
related works dealing with the 256-bit curve – Curve25519
and NIST P−256. Compared with the Curve25519 imple-
mentation with ca. 9 million cycles [15], our solution has
1.2 million cycles (double side, ECDH implementation).

Similar work to ours was done with the NIST P-256
prime elliptic curve, 1.1 million cycles were obtained with
ephemeral key elliptic curve Diffie-Hellman (ECDH) (more in
[27]). These speed results are comparable.

The related works did not provide any memory require-
ments that are critical for a real environment. Our solution
still leaves 75 % of free memory. This should also leave
sufficient space for other communication protocols, coding
and other methods, which are necessary for communication.

5. CONCLUSIONS

The implementation of prime field curves was described
and the measurements were provided. The prime field
curves were also measured with ECDH implementation and
tested in real network.

The comparison with current research shows comparable
results, but we provide complete measurements from the
time and memory points of view, suitable for the power
grid network. The binary field curves show poor efficiency
in the microcontroller with hardware multiplier compared
with the prime field solution and it seems that the prime
field curves should be the solution for low-power devices
such as MSP430.

The future work will concentrate on lower memory
requirements and also on curves with higher secure-bit key-
size. We would like to provide highly secured curves for
low-power devices also for the far future (later than 2030).

It will also be interesting to try the implementation of
Curve25519 on the MSP430 with hardware multiplier.

ACKNOWLEDGMENTS

Research described in this paper was financed by the
National Sustainability Program under grant No LO1401.
For the research, the infrastructure of the SIX Centre was
used.

Received on April 9, 2015

REFERENCES

1. N. Koblitz, Elliptic curve cryptosystems, Mathematics of Computation,
48, 177, pp. 203 – 209, p.138, 1987.

2. V. Miller, Use of elliptic curves in cryptography, CRYPTO. ISBN
978-3-540-1646-0. Lecture note in Computer Science, 85, pp. 417–
426, 1985.

3. B. Oualid, Elliptic Curve Discrete Logarithm, GEMAN, 15, 1, 2013.
4. R.A. Raval, S.A. Patel, D.B. Patel, Galois Field and Security for

Online Data Storage in Cloud Computing, IJESRT, 3, 5, pp. 424–427,
2014.

 Radek Fujdiak, Jiri Misurec, Petr Mlynek, Leonard Janer 5

88

5. M. Muni Babu, S. Mp. Quebeb, V. Sunil Babu, A Comparative study
of elliptic curve cryptography and RSA to Kerberos authentication
protocol, International Journal of Advances in Science Engineering
and Technology, 1, 3, pp. 43–45, 2014.

6. W. Dai, Crypto+TM Library: a Free C++ Class Library of Crypto-
graphic Schemes, 2013, http://www.cryptopp.com/.

7. OpenSSL, OpenSSL Library: a Project of Open Source SSL and TLS
protocols implementation, https://www.openssl.org/., 2015.

8. The Legion of Bouncy Castle, Java and C# Crypto Libraries,
Collection of APIs used in cryptography, 2014, https://www.-boun-
cycastle.org.

9. Theoretical Computer Science Research Group, Flexiprovider: a
powerful toolkit for the Java Cryptography Architecture (JCA/JCE),
Technische Universitat Darmstadt, Germany, 2012, http://www.
flexiprovider.de/.

10. N. Gura; A. Patel; A. Wander; H. Eberle, Ch. Shantz, Comparing
Elliptic Curve Cryptography and RSA on 8-bit CPUs, Sun Micro-
systems Laboratories, Springer, Lecture Notes in Computer Science,
3156, pp. 119–132, 2004.

11. E. Wenger, M. Werner, Evaluating 16-bit Processors for Elliptic
Curve Cryptography, Springer, Lecture Notes in Computer Science,
7079, pp. 166–181, 2011.

12. E. Wenger, T. Unterluggauer, M. Werner, 8/16/32 Shades of Elliptic
Curve Cryptography on Embedded Processors, Springer. Lecture
Notes in Computer Science, 8250, pp. 244–261, 2013.

13. G. Hinterwalder, A. Morad, M. Hutter, P. Schwabe, Ch. Paar, Full-
Size High-Security ECC Implementation on MSP430 Micro-
controllers, 2014.

14. P. Sasdrich, T. Guneysu, Efficient Elliptic-Curve Cryptography using
Curve 25519 on Reconfigurable Devices, Reconfigurable Computing:
Architectures, Tools, and Applications, Springer International
Publishing, pp. 25–36, 2014.

15. D.J. Bernstein, Curve25519: new Diffie-Hellman speed records,
Public Key Cryptography-PKC 2006, Springer Berlin Heidelberg, pp.
207–228, 2006.

16. NIST, Recommended Elliptic Curves for Federal Government Use,
Technical Report, National Institute of Standards and Technology
(NIST), 1999.

17. Certicom Corp, SEC 1: Elliptic Curve Cryptography, Certicom
Research, Standard for efficient Cryptography, Ver. 2, May 2009.

18. American National Standard Institute, The elliptic curve digital
signature algorithm, ANSI X9.62-1998, 1998.

19. WTLS, Wireless application protocol, wireless transport layer
security specification, Wireless Application Forum, 1999.

20. NIST, Recommendation for Pair-Wise Key Establishment Schemes
Using Discrete Logarithm Cryptography, NIST Special Publication
800–56 (Revised), 2007.

21. P. Mlynek, J. Misurec, M. Koutny and O. Raso, Design of Secure
Communication in Network with Limited Resources, Proceedings of
the 4th European Innovative Smart Grid Technologies (ISGT), 2013,
pp. 1–5.

22. R. Fujdiak, P. Mlynek, J. Misurec, O. Raso, Random Number Generator
in MSP430 × 5xx Families, Elektrorevue, 4, 4, pp. 70–74, 2013.

23. O. Raso, Mod_arithm v1-01: a static library with mathematical
computation functions for big numbers, Brno University of Techno-
logy, Czech Republic, 2013.

24. P. Mlynek, O. Raso, R. Fujdiak, L. Pospichal, P. Kubicek, Implementation
of Elliptic Curve Diffie Hellman in Ultra Low Power Microcontroller,
Proceeding of the 37th International Conference on Telecom-
munications and Signal Processing (TSP), Berlin, Germany, pp. 267–
271, 2014.

25. Texas Instruments, Datasheet: MSP430F543x and MSP430F541x
Mixer-Signal Microcontrollers, Technical Documentation (SLAS612E),
Aug. 2009 (revised Aug. 2014).

26. BlueKrypt, The Cryptography Key Length Recommendation Project,
Feb. 2015, http://www.keylength.com/.

27. S. Gueron, V. Krasnov, Fast Prime Field Elliptic Curve Crypto-
graphy with 256 bit Primes, Journal of Cryptographic Engineering,
Nov., pp. 1–11, 2014.

