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Power grid networks, that use symmetric ciphers for secured communication, need some system for key 
distribution. It might be a special secured channel or a method which allows key-distribution via public channel. 
The public channel method could be done with asymmetric ciphers, but the growing computing and power 
requirements of modern ciphers are problematic for low-power devices, which are used in this kind of networks 
and which should provide sufficient security for communication. This article deals with the implementation of the 
Diffie-Hellman algorithm over elliptic curves for ultra-low-power devices, used in power grid and smart grid 
networks. The algorithm uses elliptic curves over the prime field. Our method might be used for key-distribution 
via public channels without any other equipment or devices. 

1. INTRODUCTION 

Elliptic curve cryptography (ECC) was first introduced 
by N. Koblitz [1] and V. Miller [2]. ECC is today an 
independent scientific field, which starts from asymmetric 
cryptography (the public key cryptography). The security 
of ECC is based on the elliptic curve discrete logarithm 
problem (ECDL) [3]. The plane curve over a finite field 
(Galois field) algebra is used (more about finite field algebra 
in [4]). Compared with public-key cryptography the ECC 
offers smaller key-size with the same security level (Table 1 
[5]). This is an advantage in particular for applications with 
limited resources. 

Table 1 
ECC and Rivest-Shamir-Adleman algorithm (RSA) 

key-size NIST comparison 

Symmetric key-size 
[bits] 

ECC key-size  
[bits] 

Asymmetric key-size 
[bits] 

80 160 1024 
112 224 2048 
128 256 3072 
192 384 7680 
256 512 15360 

There exist many software implementations and libraries 
of ECC for devices with non-limited resources (Crypto++ 
[6], OpenSSL [7], Bouncy castle [8], FlexiProvider [9], and 
many others), but those with limited resources are in a 
different situation. Different platform architectures, limited 
memory and limited computing power are usually the main 
problem as regards compatibility with common libraries. 
The works in this field concentrate on ECC tests on 8/16/32 
bit [10–12] low-power microcontrollers. These works mostly 
provide solution for low-size key with ECC. Current work 
[13, 14] concentrate on the new Curve25519 (more about 
this curve in [15]). These works try to provide the fastest 
possible solution or implementation, which might be used 
for low-power devices. This could be a solution for networks 
or places where the time is crucial (sensor networks, 

wireless networks) and where, for example, key-establish-
ment is performed repeatedly. Power grid networks only 
need sufficient speed, but here the memory requirements or 
the final memory requirements of the implementation with 
a concrete cryptosystem are also very important, because 
the memory is also used for the data correction, com-
munication protocols, data collection, etc. 

 
Fig. 1 – Power grid network for remote data acquisition [21]. 

In [10–14] the memory tests are missing, the same as 
tests with a concrete cryptosystem. In our article, we focus 
on the security between the measuring point and the data 
concentrator in the power grid network. Figure 1 shows our 
concrete network, where the Intelligent Communication 
Unit belongs to the MSP430 low-power devices family 
(PLC – power line communication, WAN – wide area 
network, GSM – mobile communication, ADSL – asymmetric 
digital subscriber line, RS485 – serial link). We try to 
implement with this microcontroller the concrete full-size 
secured elliptic curves from a different kind of standards 
(e.g. National Institute of Standards and Technology – 
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NIST [16], Standards for Efficient Cryptography – SEC 
[17], Standard for HASH function and signature – ANSI 
[18], Wireless transport layer security standards – WTLS 
[19]). These curves could be used for Advanced Encryption 
Standards (AES) key-establishment with the elliptic curve 
Diffie-Hellman cryptosystem (ECDH) [20]. We provide 
experimental measurement from the time and the memory 
points of view. 

Our previous work has provided a random number 
generator for cryptography on low-power devices [22], big 
number representation and arithmetic for low-power devices 
[23] and also elliptic curves over binary field for low-
power devices [24]. This article shows our latest work with 
prime field curves and also a comparison with our previous 
work with binary field curves. The article is divided into 
the following parts: experimental background and presets 
(where we give all the necessary information that was used 
for our experiment and implementation), experimental results 
(commented results are shown), discussions (answering the 
impact value question of our research), and conclusions. 

2. EXPERIMENTAL BACKGROUND AND PRESETS 

We used the MSP430f5438A ultra-low-power micro-
controller from Texas Instruments. Its strong points are real-
time capability with ultra-low-power consumption, digitally 
controlled oscillator (DCO) stability, stack processing 
capability, application operating modes, no external crystal 
need, low wake-up time (less than 5 μs), 16-bit operations, 
up to 32 MHz crystals, 32-bit hardware multiplier, 256 Kb 
FLASH, 16 kB RAM and 16-bit registers (all these are the 
main attributes for our problematic more about MSP430 in 
[25]). The microcontroller presets for the experiment were: 
the digital controlled oscillator was used as the source for 
CPU. We used default DCO frequency ~1 MHz. That 
means ~100 ns for one single cycle (Tcycle = 1/fCPU). Vcc was 
3000 mV and the operating mode was active mode (AM). 
The Icc was 300 μA for our Vcc and fCPU.  

Texas Instruments has its own development software for 
their devices based on eclipse core, namely the code 
composer studio (CCS). We worked with CCS version 5.2. 
CCS* also has its own options for software compilation, 
which impact on the final results of measurement. Our 
presets for CCS were as follow: for the processor setup we 
used the mspx silicon version (20 bits wide for registers 
and buses), the application binary interface coffabi (the 
coffabi shows in the settings better memory requirements in 
tens of a percentage point compared with the eabi binary 
interface), large model for data and code (this allows 
placing the data and code anywhere in flash memory) while 
the indication of near data was not used. The debug model 
was a full symbolic debug and the full optimization in the 
presence of debug directives was on (these settings allow 
good debugging, but they could also impact a little bit on 
the size or the speed). No special software optimization 
options or advanced optimization options were used. The 
msp430f5438.h library was used for the registers and basic 
microcontroller settings. 

The elliptic curves (EC) over finite field were chosen for 
their relatively simple computation and small key-size, 
                                                           

* http://www.ti.com/tool/CCSTUDIO 

which is critical for low-power devices such as MSP430. 
The elliptic curve cryptography mostly uses finite fields. 
There are two basic types of EC finite fields, i.e. prime 
field curves (GFp) and binary field curves (GF2m). The EC 
over binary field should be simpler than prime field curves, 
but with devices that have a good hardware multiplier and a 
good CPU the prime field curves should be much faster. 
Based on elliptic curves, the elliptic curve Diffie-Hellman 
was chosen as the key-distribution algorithm. The algorithm is 
based on discrete logarithm problem and has been developed 
for key-distribution purpose.  

We worked with cryptographic OpenSSL libraries (openssl-
fips-ecp-2.0.6 [7], openssl-fips-ecp-2.0.7 [7] and openssl-
1.0.1i [7]). Their algorithms are written in the C Language 
(this was also a precondition for simpler imple-mentation 
and future compatibility among different micro-controller 
version and other platform versions (PC)). The concept, 
name of the headers, functions and files stayed the same or 
at least very similar. This should provide for a transparent 
code and also a better compatibility with the original libraries. 
The used libraries provide the following 27 prime-field 
curves [7]: 
• Fp112: secp112r1, secp112r2, 

wap_wsg_idm_ecid_wtls6, wap_wsg_idm_ecid_wtls8. 
• Fp128: secp128r1, secp128r2.Fp160: secp160k1, 

secp160r1, secp160r2, wap_wsg_idm_ecid_wtls7, 
wap_wsg_idm_ecid_wtls9. 

• Fp192: secp192r1, secp192k1, X9_62_prime192v1, 
X9_62_prime192v2, X9_62_prime192v3. 

• Fp224: secp224k1, secp224r1, secp224r2, 
wap_wsg_idm_ecid_wtls12. 

• Fp239: prime239v1, X9_62_prime239v2, 
X9_62_prime239v3. 

• Fp256: secp256k1, X9_62_prime256v1. 
• Fp384: secp384r1. 
• Fp521: secp521r1. 
These curves are recommended by different kinds of the 

standards SECG (Standards for Efficient Cryptography 
Group), WTLS (Wireless Transport Layer Security), NIST 
(National Institute of Standards and Technology) or ANSI 
X9.62 (standard for HASH and signatures). All these curves 
were also implemented in the microcontroller. These curves 
use the non-adjective form of multiplication (w-NAF function), 
where it is first necessary to compute the multiplicand n of 
Q = nP (Algorithm 1), where Q and P are points on the 
elliptic curve and the n is scalar multiplicand. 

i = 0 
while (n > 0) do 
 if ((n mod 2) == 1) then 
   ni = n mod 2W 
   n -= ni 
 else  
   ni = 0 
 n /= 2 
 i++ 
return (ni-1, ni-2, ... n0) 
Algorithm 1 – w-NAF algorithm (computation of d multiplicand) 

The modulo function is defined as follow Algorithm 2: 
if ((n mod 2W) >= (2W-1)) 
  return ((n mod 2W) – 2) 
 else 
  return (n mod 2W) 
Algorithm 2 – w-NAF algorithm (the modulo function definition) 
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and the nP point multiplication is in Algorithm 3: 
Q = 0 
for (j = i-1 down to 0) do 
  Q *= 2 
  if (nj != 0) 
   Q = Q + njP 
return Q 

Algorithm 3 – w-NAF algorithm (final dP multiplication) 

For the curve computation purpose, the three main different 
functions were implemented.  

The first function is ec_gfp_simple_meth. It is a basic 
function for curve representation, it contains the simplest 
possible algorithms and it is also the lowest common deno-
minator implementation for the prime field curves. Two 
other functions ec_gfp_mont_meth and ec_gfp_nist_meth, 
use this simple function as their starting point. 

The ec_gfp_mont_meth adding the Montgomery multi-
plication and methods to the following functions:  
• group_init (initialization function for curves) 
• group_finish (ending function) 
• group_clear_finish (clearing the group of curves) 
•  group_copy (copying the group of curves) 
• group_set_curve (choosing the concrete curves) 
•  field_mul (field multiplication) 
• field_sqr (field squaring) 

 

• field_encode (field encoding) 
• field_decode (field decoding) 

and  
• field_set_to_one (special function for internal purposes).  

This Montgomery implementation should optimize the 
rather difficult computation functions.  

The ec_gfp_nist_meth optimizes the computation process 
with the NIST standard. This function is only for the NIST 
standardized functions and it optimizes the following functions: 
group_copy group_set_curve, field_mul and field_sqr. 

3. EXPERIMENTAL RESULTS 

For low-power-devices the important attributes for real-
event implementation are not only speed but also memory 
requirements. The speed impacts on the time that the 
microcontroller needs to be awake in the active mode. This 
is critical for the battery lifetime.  

Another problem is that in the time of hard computation 
it is not possible to use the microcontroller for anything 
else (for example communication, data sending, etc.).  

The memory size impacts on what we will still be able to 
implement into the microcontroller. If the memory is fully 
filled, it will not be possible to implement another mechanism 
for communication, data storage or any other purpose. 

 

Table 2 
Number of cycles for different kinds of curves (only one-side operation) 

Curve Name Type Number of cycles 
(gfp_mont) 

Number of cycles for 
whole ECDH Heap Size [B] Standard 

secp112r1 Fp112 139  276 271  675 2  219 SECG/WTLS 
secp112r2 Fp112 161  508 311  511 2  219 SECG 

wap_wsg_idm_ecid_wtls6 Fp112 155  225 286  675 2  219 SECG/WTLS 
wap_wsg_idm_ecid_wtls8 Fp112 154  206 348  474 2  219 WTLS 

secp128r1 Fp128 171  116 313  053 2  219 SECG 
secp128r2 Fp128 183  768 331  110 2  219 SECG 
secp160k1 Fp160 213  400 375  573 2  425 SECG 
secp160r1 Fp160 184  673 331  379 2  450 SECG 
secp160r2 Fp160 197  593 331  520 2  470 SECG/WTLS 

wap_wsg_idm_ecid_wtls7 Fp160 184  404 331  152 2  470 SECG/WTLS 
wap_wsg_idm_ecid_wtls9 Fp160 277  533 510  505 2  470 WTLS 

secp192k1 Fp192 335  016 411  531 2  550 SECG 
X9_62_prime192v1 

secp192r1 Fp192 359  441 451  296 2  650 NIST/X9.62/SECG 

X9_62_prime192v2 Fp192 317  978 433  735 2  645 X9.62 
X9_62_prime192v3 Fp192 342  049 441  291 2  665 X9.62 

secp224k1 Fp224 435  447 540  010 2  800 SECG 
secp224r1 Fp224 382  366 486  052 2  825 NIST/SECG 

wap_wsg_idm_ecid_wtls12 Fp224 376  861 484  792 2  800 WTLS 
X9_62_prime256v1 

secp256r1 Fp256 506  953 611  219 2  905 X9.62/SECG 

 
The requirements for memory include the big number 

arithmetic and representation, the cryptographic secure 
random number generator, the elliptic curve cryptography 
(prime and binary fields), the three computation methods 
(simple, NIST and Montgomery) and the ECDH crypto-
system. The RAM memory requirements are 4291 kB 
(26 %), the FLASH memory requirements are 58kB (23 %).  

The RAM only contains the necessary parts of the 
program and configuration, because in our settings (large-
code model) we use primarily the FLASH memory for data 
(non-text section as .reset, .const) and text (text section as 
code and C-assembled libraries). 

The stack for the whole concept was constantly 1 kB. 
The heap size for the curves changed with the growing 
key-size (Table 2). The main measurement is given in 
Table 2. It is given the heap size, curve standardization, 
final speed requirements for single curves and also for the 
implemented ECDH cryptosystem with these curves. 

The Table 2 is only for the gfp_mont_meth. The gfp_ 
simple_meth should be used only for the simplest curves.  

The gfp_nist_meth was also tested for the NIST curves 
but the attributes were mostly worse than the Montgomery 
implementation.  
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In the example with the secp224r1 curve, the computing 
requirement was 1.3 million cycles higher than with the 
gfp_mont_meth and the heap size requirement was 400 B 
lower (in general the NIST function is much slower and it 
has lower memory requirements). 

The comparison of the heap size in our solution with 
binary field curves (for different key-sizes) is shown in 
Figure 2. The heap size requirements of the prime field are 
really similar compared with the binary field. The heap size 
would not be the main reason for choosing the prime field 
curves in the low power microcontroller. The time re-
quirement comparison of the prime field with binary field 
curves (with different key-sizes) is shown in Figure 3. 

The main parameters of the implemented prime field 
elliptic curve secp256r1 might be found in [16] as NIST 
P-256 curve. 

 
Fig. 2 – The heap size based on key-size for different kinds of field. 

 
Fig. 3 – The time requirements based on key-size 

for different kinds of field. 

4. DISCUSSION 

The important attributes for the real events and environ-
ments are the speed and the memory requirements. As 
described previously the speed is important, because, for 
example, in power grids the speed of the cryptography 
algorithm for securing the communication impacts on the 
delay until the two sides can communicate.  

The memory requirements, on the other hand, have an 
impact on the possibilities to implement communication 
protocols, etc. 

Compared with binary field curves, our results with 
prime field implementation show better attributes, both in 
speed and also in memory requirements. Compared with 
other works, we provide secured 256-bit elliptic curve for 

ECDH (or a different algorithm). Our best resulted curve is 
standardized by the SECT and X.92 standards.  

The 256 key-size of elliptic curve corresponds to the 
AES−128 (which were chosen for communication). The 
AES−128 should be sufficient till 2030+, the same as the 
implemented 256-bit curve [26]. 

Not many solutions with a 256-bit curve for limited 
resources are provided; for this problematic there exist two 
related works dealing with the 256-bit curve – Curve25519 
and NIST P−256. Compared with the Curve25519 imple-
mentation with ca. 9 million cycles [15], our solution has 
1.2 million cycles (double side, ECDH implementation).  

Similar work to ours was done with the NIST P-256 
prime elliptic curve, 1.1 million cycles were obtained with 
ephemeral key elliptic curve Diffie-Hellman (ECDH) (more in 
[27]). These speed results are comparable.  

The related works did not provide any memory require-
ments that are critical for a real environment. Our solution 
still leaves 75 % of free memory. This should also leave 
sufficient space for other communication protocols, coding 
and other methods, which are necessary for communication. 

5. CONCLUSIONS 

The implementation of prime field curves was described 
and the measurements were provided. The prime field 
curves were also measured with ECDH implementation and 
tested in real network.  

The comparison with current research shows comparable 
results, but we provide complete measurements from the 
time and memory points of view, suitable for the power 
grid network. The binary field curves show poor efficiency 
in the microcontroller with hardware multiplier compared 
with the prime field solution and it seems that the prime 
field curves should be the solution for low-power devices 
such as MSP430. 

The future work will concentrate on lower memory 
requirements and also on curves with higher secure-bit key-
size. We would like to provide highly secured curves for 
low-power devices also for the far future (later than 2030).  

It will also be interesting to try the implementation of 
Curve25519 on the MSP430 with hardware multiplier. 
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