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This paper describes an efficient Field programmable gate array (FPGA) 
implementation of a convolutional turbo code (CTC) decoder for long term evolution 
(LTE) standard, release 8, using maximum logarithmic – maximum a posteriori 
probability (Max Log MAP) algorithm. The considered coding rate is 1/3 (the native 
coding rate), the puncturing procedure not being taken into discussion here, and the 
number of turbo iterations is chosen as 3, without reducing the generality of the 
reported results. The hardware implementation targets a Xilinx Virtex 5 XC5VFX70T 
device, from a Xilinx ML507 evaluation board. 

1. INTRODUCTION 

Turbo codes were introduced by Berrou, Glavieux, and Thitimajshima [1–3], 
but the initial perception of the method was not a promising one, especially 
because of the good reported results compared with the existing forward error 
coding (FEC) solutions. Once the authors were able to prove the strengths and the 
validity of the proposed architecture, more and more standards started to include 
turbo codes, as recommended in the first phase and fully mandatory afterwards. 
This evolution was possible as the processing power increased and the complexity 
of the turbo codes versus the classical convolutional codes was not a bottleneck 
anymore. Nowadays, the computational power of devices such as digital signal 
processors (DSPs) or field programmable gate arrays (FPGAs) allows the 
implementation of turbo encoding/ decoding, but the complexity of the general 
architecture (for example, the entire digital baseband processing for an long term 
evolution (LTE) base station) requires further optimization for all the blocks in the 
scheme. 
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One of the most important standardization groups which early adopted the 
turbo codes is the third-generation partnership project (3GPP) [4]. In the first 
version of Universal Mobile Telecommunications System (UMTS), released in 
1999, turbo codes were included for the first time as an FEC solution, in addition to 
the traditional convolutional codes. Along with the evolution of the UMTS 
standard, which brought high data throughput once the high speed packet access 
(HSPA) feature was introduced, the turbo coding architecture remained unchanged 
because of the elevated performance it provided. Furthermore, once the leap 
forward was made to the fourth generation LTE [5, 6] technology, turbo codes kept 
their core structure and key role in reducing transmission errors. In other words, the 
same constituent encoder is currently used in both UMTS and LTE. The main 
difference introduced by LTE refers to the interleaving block, which is now a 
quadratic permutation polynomial (QPP), a block suitable for high data rates 
obtained especially in parallel decoding architectures.  

The arithmetical properties for the QPP interleaver allow the parallelization 
of the decoding process inside the algorithm, taking advantage on the main 
principle introduced by turbo decoding, i.e., the usage of extrinsic values from one 
turbo iteration to another. However, the goal of this paper is to provide an efficient 
hardware implementation for the main individual components of a turbo decoding 
architecture, the QPP interleaver, respectively the Soft Input Soft Output (SISO), 
with a direct impact on both serial and parallel decoding schemes. On the same 
time, no discussion will be made on the well-known methods [7] used to reduce the 
decoding latency for the selected algorithm inside a SISO unit. 

This paper is organized as follows. Section 2 introduces the LTE turbo 
coding structure. In Section 3, the selected maximum logarithmic - maximum a 
posteriori probability (Max Log MAP) decoding algorithm is detailed, all the 
equations for a binary input being deduced. Section 4 presents the proposed 
hardware decoding architecture for a serial approach. In Section 5, the decoding 
performances are discussed in terms of bit error rate (BER) versus signal to noise 
ratio (SNR) and speed versus required hardware resources when targeting an 
XC5VFX70T FPGA chip [8] on the Xilinx ML507 [9] evaluation board. Section 6 
presents the final conclusions and the perspectives of this study. 

2. LONG TERM EVOLUTION CODING STRUCTURE 

The LTE coding structure is a parallel concatenated convolutional code 
(PCCC), comprising of two constituent encoders and one interleaving block. Each 
individual 8-state constituent encoder has the following transfer function:  

 [ ],)()/(  1,)( 01 DgDgDG =  (1) 

where D denotes the elemental delay block and: 
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The native coding rate of the encoding structure is 1/3 since the input 
sequence kC  (k = 1…K, where K denotes the length of the uncoded data block) is 
sent at the output of the encoder as the systematic sequence kX  and each 

constituent encoder generates on its own a parity sequence kZ , respectively '
kZ .  

The interleaved sequence '
kC  is obtained from kC , after the interleaver 

module reorganizes the input bits 

 π( ) 1 ,'
k iC = C , i = ...K   (3) 

 

where the length K of the input data and parameters f1 and f2 provided in Table 
5.1.3–3 in [6] are used to generate addresses: 

 Kififi mod)()(π 2
21 ⋅+⋅= .  (4) 

 

3. MAX LOG MAXIMUM A POSTERIORI  DECODING ALGORITHM 

In terms of turbo decoding algorithms, the classical MAP algorithm provides 
the reference results, although it is not suitable for practical implementations, its 
main drawbacks being the large dynamical range of the variables and the 
prohibitive arithmetic complexity. This is the reason why suboptimal versions of 
the MAP algorithm were introduced and studied in the literature. Some of the most 
popular alternatives to the reference MAP are log MAP (logarithmic MAP) [10, 
11], lin log MAP (linear logarithmic MAP) [12], const log MAP (constant 
logarithmic MAP) [13] and max log MAP. All these options use logarithmic 
representations in order to compensate for the first mentioned drawback. 
Furthermore, from the Jacobi logarithm expression [14]: 

 )e1ln(),max()eeln( xyyx yx −−++=+ ,  (5) 

the second right term is approximated by the different methods mentioned above, 
i.e., either as a constant, linear values from a pre-stored table or just ignored (the 
max log MAP approach). 

For the LTE turbo coding, the theoretical decoding scheme is presented in 
Fig. 1. Same decoding structure was presented in [15] for UMTS. One can notice 
the input log likelihood ratios (LLRs) for systematic bits )( k

i XΛ and for parity bits 

)( k
i ZΛ  and ),( '

k
i ZΛ  the output LLRs for decoding unit 1 (SISO 1) ),(1 k

O XΛ  
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respectively for decoding unit 2 (SISO 2) ),( '
2 k
O XΛ  and the extrinsic value 

)( kXW . Also, the main principle of the turbo decoding can be observed, i.e., the 
input of one decoding unit contains the previously computed output of the other 
decoding unit.  

 
Fig. 1 – LTE turbo decoding scheme. Fig. 2 – LTE turbo coder trellis. 

Inside each SISO unit, the max log MAP equations for binary input are 
deduced from the corresponding constituent encoder trellis depicted in Fig. 2. There 
are 8 states on each stage of the trellis and each diagram state permits 2 inputs and 
2 outputs. First, the branch metrics between states Si and Sj are computed (2 such 
metrics for each state from the total of 8 corresponding to each stage of the trellis): 

                 

),()(),()(γij jiZZjiXXV k
i

k Λ+= . (6) 

In conclusion, there are 16 branch metrics to be computed at each stage, but in 
reality there are only 4 possible values for these metrics: 
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The next step in max log MAP algorithm is to execute the backward 
recursion when the backward metrics are computed. The backward metric for the 
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state Si at the kth stage is 7.0 and 32  ),(β ≤≤+≤≤ iKkSik  The backward 
recursion is initialized with 7.0  ,0)(β 3 ≤≤=+ iSiK From the stage k = K+2 until the 
stage k = 2, the computed backward metrics are: 

 { })γ)(β( ),γ)(β(max)(β̂ 221111 ijjkijjkik SSS ++= ++ ,  (8) 

where )(β̂ ik S  represents the un-normalized metric and Sj1 and Sj2 are the 2 states 
from stage k+1 connected to state Si at stage k. Once that at each stage k the metric 

)(β̂ 0Sk is computed, the rest of the 7 backward metrics are normalized and stored: 

 )(β̂)(β̂)(β 0SSS kikik −= .  (9) 

In a similar manner, the forward recursion is performed. For stage 0, the 
forward metrics are initialized 70,0)(α0 ≤≤= iSi , and then, from stage k = 1 
until stage k = K the un-normalized/ normalized forward metrics are computed: 
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No storing is needed for the forward metrics. Once they are computed for 
stage k, the decoding algorithm can compute in the same time a LLR estimate for 
the data bits Xk. This LLR is found the first time by considering that the likelihood 
of the connection between the state Si at stage k-1 and the state Sj at stage k is: 

 )(βγ)(α),(λ 1 jkijikk SSji ++= − .  (11) 

The likelihood of having a bit equal to 1 (or 0) is when the Jacobi logarithm 
of all the branch likelihoods corresponds to 1 (or 0) and thus: 

 { } { }.),(λmax),(λmax)(
0:)(1:)(0 jijiX k

iji
k

iji
k XSSXSS =→=→

−=Λ   (12) 

4. PROPOSED HARDWARE DECODING ARCHITECTURE 

The proposed hardware decoding scheme depicted in Fig. 3 represents an 
adaptation of the theoretical decoding structure presented in Fig. 1. It was 
introduced by the authors in [16] for an WiMAX CTC turbo decoder. As 
previously mentioned, the key of the turbo decoding is the iterative usage of the 
decoding information between the 2 SISO units. A natural conclusion arises, i.e., 
while one SISO unit is decoding the input information, the second one just waits 
the finish of the process before starting its own decoding phase. Moreover, since 
the interleaver/ deinterleaver modules are processing the information in a frame-
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based manner, all the decoded data should be available before starting these 
procedures. In other words, only one SISO unit may be used in the decoding 
architecture. In Fig. 3, there are 3 dotted-line memory blocks. These are virtual 
memories, added just for a clear understanding of the scheme. In reality, these 
memory blocks are not needed since the corresponding data is computed and 
further used in the same time.  

 
Fig. 3 – Proposed serial turbo decoding scheme.  

Also, one point that should be mentioned is that the interleaver and 
deinterleaver blocks have the same hardware structure, including a block memory 
and an interleaver. The memory is written with the interleaved addresses each time 
a new data block is received. The values are then used as read addresses (when 
interleaver process is ongoing) or as write addresses (when deinterleaver process is 
ongoing). More precisely, this memory block used by the interleaver is not a huge 
pre-stored ROM memory, but a Kmax (for LTE the value is 6144) location RAM 
memory, which is written offline each time a new encoded data block is received. 
This memory block, together with the 3 memory blocks from the left side of the 
picture (for the input data) are switched-buffers, allowing new data to be written 
while the previous one is still under decoding process, so that no additional delay 
to be added in the total decoding latency. 

The scheme implements the relations included in Fig. 4. The most complex 
block of the interleaver remains in this case the modulo K block. One 
implementation solution for this block is to consider themodulo result as the 
reminder of a division. In this case, the reminder results correspond to a classic 
divider-for-integers scheme. The restoring integer division scheme might be a 
sequential one, i.e., a new set of inputs can be received only after the previous one 
was processed. This reduced overall processing speed is not attractive, even though 
the scheme uses few resources (264 Flip Flop registers and 334 LUTs @ 217 MHz 
for the Virtex 5 targeted device). An accepted solution is a pipe-line radix-2 non-
restoring integer division [17]. Such a divider is available in Xilinx Core Generator 
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13.4 [18], the price for reduced latency being the increased amount of used 
resources (the complete interleaver with such a divider uses 1578 Flip Flop 
registers and 1708 LUTs @ 300 MHz for the Virtex 5 targeted device). 

 
Fig. 4 – Proposed interleaver scheme. 

The second block from Fig. 3 that is critical for decoder performances and 
costs is the SISO decoding unit. The proposed scheme for implementation is 
described in Fig. 5.  

 
Fig. 5 – Proposed scheme for SISO decoding unit. 

All modules are implementing in a dedicated manner the relations provided 
in Section 3. Each gamma (branch metric), beta (backward metric) and alpha 
(forward metric) is computed with a dedicated hardware. At each stage, 16 gamma 
values should be theoretically computed, but in reality only 4 possible values 
exists, one of them being 0. Then the 2 sums from (8) are computed for each of the 
8 states in BETA block. The corresponding “max” function is applied in the MUX 
MAX block. Being a recursive process, after normalization, the 7 obtained beta 
values from one stage are used at the next one after being delayed in the 7xD module 
and also are stored in the MEM BETA memory. For alpha values the procedure is 
similar, except that no storing is needed since right after the LLRs are computed in 
the L module. The NORM block performs the final normalization before providing 
the output LLRs. 
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5. PERFORMANCES AND IMPLEMENTATION RESULTS 

This section presents the obtained results for the proposed turbo decoder 
while simulated in finite/ infinite precision, in different radio environment (AWGN 
or Rayleigh channels), with different configuration settings (variable data block 
length K) and with different decoding parameters (1 to 5 turbo iterations). All 
pictures describe BER versus SNR. 

Figure 6 depicts the decoding performances degradation when finite precision 
is used versus infinite precision. For finite precision, a 10 bits format is used, one 
bit for the sign, 6 bits for the integer part and 3 bits for the fractional part. The 
results are provided for a 512 bits data block, with quadrature phase shift keying 
(QPSK) modulation, after 3 turbo iterations over an AWGN channel. Figure 7 
compares the obtained turbo decoder performances over an AWGN channel, 
respectively over a Rayleigh channel characterized by slow fading and frequency 
selective fading. Infinite precision was used for both curves, 512 bits data block, 
with QPSK and 3 turbo iterations.  

Figure 8 presents the dependency between the turbo decoding performances 
and the turbo iterations number, 512 bits data blocks and QPSK modulation were 
used. 3 iterations provide best balance between latency and performances. Figure 9 
depicts the turbo decoding performances versus data block length. 
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Fig. 6 – Infinite vs. finite precision. 
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Fig. 7 – AWGN vs. Rayleigh channel. 
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Fig. 8 – Variation vs. number of iterations. 
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Fig. 9 – Variation vs. data block length. 

6. CONCLUSION 

This paper presented in the first part the principles of LTE turbo coding and 
the general turbo decoding scheme. For the decoding algorithm, max log MAP 
equations were then presented. Based on these equations, an efficient FPGA 
implementation solution for an LTE turbo decoder was proposed. The main two 
blocks of the architecture were the interleaver and the SISO decoding unit. For the 
interleaver, a simplified scheme was proposed, based on the usage of 3 similar 
accumulators and one pipe-line radix-2 non-restoring integer divisor. Even for this 
simplified scheme, our team continues the efforts to reduce the complexity, mainly 
provided by the divider, by splitting the related arithmetic so that modulo result to 
be maximum 2, scenario that requires simplified division scheme. The second 
block, the SISO decoding unit, was implemented in an efficient manner by taking 
advantage on the repetitive max log MAP equations for computing branch metrics, 
the backward metrics and the forward metrics. 
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The obtained decoding performances were provided, pointing on one hand 
the small degradation introduced by a 10 bits numerical representation format, and 
on the other hand comparing the simulation results when the radio environment 
was changed, when the transmission parameters were modified and when the 
decoding setting were also changed. 
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