
Électronique et transmission de l’information

Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 60, 2, p. 163–173, Bucarest, 2015

EFFICIENT FIELD PROGRAMMABLE GATE ARRAY
IMPLEMENTATION OF A CONVOLUTIONAL TURBO CODE

FOR LONG TERM EVOLUTION SYSTEMS

CRISTIAN ANGHEL, CRISTIAN STANCIU, CONSTANTIN PALEOLOGU111

Key words: Long term evolution (LTE), Turbo codes, Field programmable gate array
(FPGA) implementation, Maximum logarithmic (Max log) - maximum
a posteriori probability (MAP).

This paper describes an efficient Field programmable gate array (FPGA)
implementation of a convolutional turbo code (CTC) decoder for long term evolution
(LTE) standard, release 8, using maximum logarithmic – maximum a posteriori
probability (Max Log MAP) algorithm. The considered coding rate is 1/3 (the native
coding rate), the puncturing procedure not being taken into discussion here, and the
number of turbo iterations is chosen as 3, without reducing the generality of the
reported results. The hardware implementation targets a Xilinx Virtex 5 XC5VFX70T
device, from a Xilinx ML507 evaluation board.

1. INTRODUCTION

Turbo codes were introduced by Berrou, Glavieux, and Thitimajshima [1–3],
but the initial perception of the method was not a promising one, especially
because of the good reported results compared with the existing forward error
coding (FEC) solutions. Once the authors were able to prove the strengths and the
validity of the proposed architecture, more and more standards started to include
turbo codes, as recommended in the first phase and fully mandatory afterwards.
This evolution was possible as the processing power increased and the complexity
of the turbo codes versus the classical convolutional codes was not a bottleneck
anymore. Nowadays, the computational power of devices such as digital signal
processors (DSPs) or field programmable gate arrays (FPGAs) allows the
implementation of turbo encoding/ decoding, but the complexity of the general
architecture (for example, the entire digital baseband processing for an long term
evolution (LTE) base station) requires further optimization for all the blocks in the
scheme.

 „Politehnica” University of Bucharest, Iuliu Maniu 1–3, Sect 5, Bucharest, room B102,
E:mail: {canghel, cristian, pale}@comm.pub.ro1

 Cristian Anghel, Cristian Stanciu, Constantin Paleologu 2

164

One of the most important standardization groups which early adopted the
turbo codes is the third-generation partnership project (3GPP) [4]. In the first
version of Universal Mobile Telecommunications System (UMTS), released in
1999, turbo codes were included for the first time as an FEC solution, in addition to
the traditional convolutional codes. Along with the evolution of the UMTS
standard, which brought high data throughput once the high speed packet access
(HSPA) feature was introduced, the turbo coding architecture remained unchanged
because of the elevated performance it provided. Furthermore, once the leap
forward was made to the fourth generation LTE [5, 6] technology, turbo codes kept
their core structure and key role in reducing transmission errors. In other words, the
same constituent encoder is currently used in both UMTS and LTE. The main
difference introduced by LTE refers to the interleaving block, which is now a
quadratic permutation polynomial (QPP), a block suitable for high data rates
obtained especially in parallel decoding architectures.

The arithmetical properties for the QPP interleaver allow the parallelization
of the decoding process inside the algorithm, taking advantage on the main
principle introduced by turbo decoding, i.e., the usage of extrinsic values from one
turbo iteration to another. However, the goal of this paper is to provide an efficient
hardware implementation for the main individual components of a turbo decoding
architecture, the QPP interleaver, respectively the Soft Input Soft Output (SISO),
with a direct impact on both serial and parallel decoding schemes. On the same
time, no discussion will be made on the well-known methods [7] used to reduce the
decoding latency for the selected algorithm inside a SISO unit.

This paper is organized as follows. Section 2 introduces the LTE turbo
coding structure. In Section 3, the selected maximum logarithmic - maximum a
posteriori probability (Max Log MAP) decoding algorithm is detailed, all the
equations for a binary input being deduced. Section 4 presents the proposed
hardware decoding architecture for a serial approach. In Section 5, the decoding
performances are discussed in terms of bit error rate (BER) versus signal to noise
ratio (SNR) and speed versus required hardware resources when targeting an
XC5VFX70T FPGA chip [8] on the Xilinx ML507 [9] evaluation board. Section 6
presents the final conclusions and the perspectives of this study.

2. LONG TERM EVOLUTION CODING STRUCTURE

The LTE coding structure is a parallel concatenated convolutional code
(PCCC), comprising of two constituent encoders and one interleaving block. Each
individual 8-state constituent encoder has the following transfer function:

 [],)()/(1,)(01 DgDgDG = (1)

where D denotes the elemental delay block and:

3 Field programmable gate array implementation of a turbo decoder 165

 .1)(;1)(3
1

32
0 DDDgDDDg ++=++= (2)

The native coding rate of the encoding structure is 1/3 since the input
sequence kC (k = 1…K, where K denotes the length of the uncoded data block) is
sent at the output of the encoder as the systematic sequence kX and each

constituent encoder generates on its own a parity sequence kZ , respectively '
kZ .

The interleaved sequence '
kC is obtained from kC , after the interleaver

module reorganizes the input bits

 π() 1 ,'
k iC = C , i = ...K (3)

where the length K of the input data and parameters f1 and f2 provided in Table
5.1.3–3 in [6] are used to generate addresses:

 Kififi mod)()(π 2
21 ⋅+⋅= . (4)

3. MAX LOG MAXIMUM A POSTERIORI DECODING ALGORITHM

In terms of turbo decoding algorithms, the classical MAP algorithm provides
the reference results, although it is not suitable for practical implementations, its
main drawbacks being the large dynamical range of the variables and the
prohibitive arithmetic complexity. This is the reason why suboptimal versions of
the MAP algorithm were introduced and studied in the literature. Some of the most
popular alternatives to the reference MAP are log MAP (logarithmic MAP) [10,
11], lin log MAP (linear logarithmic MAP) [12], const log MAP (constant
logarithmic MAP) [13] and max log MAP. All these options use logarithmic
representations in order to compensate for the first mentioned drawback.
Furthermore, from the Jacobi logarithm expression [14]:

)e1ln(),max()eeln(xyyx yx −−++=+ , (5)

the second right term is approximated by the different methods mentioned above,
i.e., either as a constant, linear values from a pre-stored table or just ignored (the
max log MAP approach).

For the LTE turbo coding, the theoretical decoding scheme is presented in
Fig. 1. Same decoding structure was presented in [15] for UMTS. One can notice
the input log likelihood ratios (LLRs) for systematic bits)(k

i XΛ and for parity bits

)(k
i ZΛ and),('

k
i ZΛ the output LLRs for decoding unit 1 (SISO 1)),(1 k

O XΛ

 Cristian Anghel, Cristian Stanciu, Constantin Paleologu 4

166

respectively for decoding unit 2 (SISO 2)),('
2 k
O XΛ and the extrinsic value

)(kXW . Also, the main principle of the turbo decoding can be observed, i.e., the
input of one decoding unit contains the previously computed output of the other
decoding unit.

Fig. 1 – LTE turbo decoding scheme. Fig. 2 – LTE turbo coder trellis.

Inside each SISO unit, the max log MAP equations for binary input are
deduced from the corresponding constituent encoder trellis depicted in Fig. 2. There
are 8 states on each stage of the trellis and each diagram state permits 2 inputs and
2 outputs. First, the branch metrics between states Si and Sj are computed (2 such
metrics for each state from the total of 8 corresponding to each stage of the trellis):

),()(),()(γij jiZZjiXXV k
i

k Λ+= . (6)

In conclusion, there are 16 branch metrics to be computed at each stage, but in
reality there are only 4 possible values for these metrics:

)()(γ),(γ

)(γ ,0γ

32

10

k
i

kk
i

k

ZXVZ

XV

Λ+=Λ=

==
. (7)

The next step in max log MAP algorithm is to execute the backward
recursion when the backward metrics are computed. The backward metric for the

5 Field programmable gate array implementation of a turbo decoder 167

state Si at the kth stage is 7.0 and 32),(β ≤≤+≤≤ iKkSik The backward
recursion is initialized with 7.0 ,0)(β 3 ≤≤=+ iSiK From the stage k = K+2 until the
stage k = 2, the computed backward metrics are:

 { })γ)(β(),γ)(β(max)(β̂ 221111 ijjkijjkik SSS ++= ++ , (8)

where)(β̂ ik S represents the un-normalized metric and Sj1 and Sj2 are the 2 states
from stage k+1 connected to state Si at stage k. Once that at each stage k the metric

)(β̂ 0Sk is computed, the rest of the 7 backward metrics are normalized and stored:

)(β̂)(β̂)(β 0SSS kikik −= . (9)

In a similar manner, the forward recursion is performed. For stage 0, the
forward metrics are initialized 70,0)(α0 ≤≤= iSi , and then, from stage k = 1
until stage k = K the un-normalized/ normalized forward metrics are computed:

() (){ }

).(α̂)(α̂)(α

,γ)(α,γ)(αmax)(α̂

0kk

221-111-k

SSS

SSS

jjk

jiikjiikj

−=

++=
 (10)

No storing is needed for the forward metrics. Once they are computed for
stage k, the decoding algorithm can compute in the same time a LLR estimate for
the data bits Xk. This LLR is found the first time by considering that the likelihood
of the connection between the state Si at stage k-1 and the state Sj at stage k is:

)(βγ)(α),(λ 1 jkijikk SSji ++= − . (11)

The likelihood of having a bit equal to 1 (or 0) is when the Jacobi logarithm
of all the branch likelihoods corresponds to 1 (or 0) and thus:

 { } { }.),(λmax),(λmax)(
0:)(1:)(0 jijiX k

iji
k

iji
k XSSXSS =→=→

−=Λ (12)

4. PROPOSED HARDWARE DECODING ARCHITECTURE

The proposed hardware decoding scheme depicted in Fig. 3 represents an
adaptation of the theoretical decoding structure presented in Fig. 1. It was
introduced by the authors in [16] for an WiMAX CTC turbo decoder. As
previously mentioned, the key of the turbo decoding is the iterative usage of the
decoding information between the 2 SISO units. A natural conclusion arises, i.e.,
while one SISO unit is decoding the input information, the second one just waits
the finish of the process before starting its own decoding phase. Moreover, since
the interleaver/ deinterleaver modules are processing the information in a frame-

 Cristian Anghel, Cristian Stanciu, Constantin Paleologu 6

168

based manner, all the decoded data should be available before starting these
procedures. In other words, only one SISO unit may be used in the decoding
architecture. In Fig. 3, there are 3 dotted-line memory blocks. These are virtual
memories, added just for a clear understanding of the scheme. In reality, these
memory blocks are not needed since the corresponding data is computed and
further used in the same time.

Fig. 3 – Proposed serial turbo decoding scheme.

Also, one point that should be mentioned is that the interleaver and
deinterleaver blocks have the same hardware structure, including a block memory
and an interleaver. The memory is written with the interleaved addresses each time
a new data block is received. The values are then used as read addresses (when
interleaver process is ongoing) or as write addresses (when deinterleaver process is
ongoing). More precisely, this memory block used by the interleaver is not a huge
pre-stored ROM memory, but a Kmax (for LTE the value is 6144) location RAM
memory, which is written offline each time a new encoded data block is received.
This memory block, together with the 3 memory blocks from the left side of the
picture (for the input data) are switched-buffers, allowing new data to be written
while the previous one is still under decoding process, so that no additional delay
to be added in the total decoding latency.

The scheme implements the relations included in Fig. 4. The most complex
block of the interleaver remains in this case the modulo K block. One
implementation solution for this block is to consider themodulo result as the
reminder of a division. In this case, the reminder results correspond to a classic
divider-for-integers scheme. The restoring integer division scheme might be a
sequential one, i.e., a new set of inputs can be received only after the previous one
was processed. This reduced overall processing speed is not attractive, even though
the scheme uses few resources (264 Flip Flop registers and 334 LUTs @ 217 MHz
for the Virtex 5 targeted device). An accepted solution is a pipe-line radix-2 non-
restoring integer division [17]. Such a divider is available in Xilinx Core Generator

7 Field programmable gate array implementation of a turbo decoder 169

13.4 [18], the price for reduced latency being the increased amount of used
resources (the complete interleaver with such a divider uses 1578 Flip Flop
registers and 1708 LUTs @ 300 MHz for the Virtex 5 targeted device).

Fig. 4 – Proposed interleaver scheme.

The second block from Fig. 3 that is critical for decoder performances and
costs is the SISO decoding unit. The proposed scheme for implementation is
described in Fig. 5.

Fig. 5 – Proposed scheme for SISO decoding unit.

All modules are implementing in a dedicated manner the relations provided
in Section 3. Each gamma (branch metric), beta (backward metric) and alpha
(forward metric) is computed with a dedicated hardware. At each stage, 16 gamma
values should be theoretically computed, but in reality only 4 possible values
exists, one of them being 0. Then the 2 sums from (8) are computed for each of the
8 states in BETA block. The corresponding “max” function is applied in the MUX
MAX block. Being a recursive process, after normalization, the 7 obtained beta
values from one stage are used at the next one after being delayed in the 7xD module
and also are stored in the MEM BETA memory. For alpha values the procedure is
similar, except that no storing is needed since right after the LLRs are computed in
the L module. The NORM block performs the final normalization before providing
the output LLRs.

 Cristian Anghel, Cristian Stanciu, Constantin Paleologu 8

170

5. PERFORMANCES AND IMPLEMENTATION RESULTS

This section presents the obtained results for the proposed turbo decoder
while simulated in finite/ infinite precision, in different radio environment (AWGN
or Rayleigh channels), with different configuration settings (variable data block
length K) and with different decoding parameters (1 to 5 turbo iterations). All
pictures describe BER versus SNR.

Figure 6 depicts the decoding performances degradation when finite precision
is used versus infinite precision. For finite precision, a 10 bits format is used, one
bit for the sign, 6 bits for the integer part and 3 bits for the fractional part. The
results are provided for a 512 bits data block, with quadrature phase shift keying
(QPSK) modulation, after 3 turbo iterations over an AWGN channel. Figure 7
compares the obtained turbo decoder performances over an AWGN channel,
respectively over a Rayleigh channel characterized by slow fading and frequency
selective fading. Infinite precision was used for both curves, 512 bits data block,
with QPSK and 3 turbo iterations.

Figure 8 presents the dependency between the turbo decoding performances
and the turbo iterations number, 512 bits data blocks and QPSK modulation were
used. 3 iterations provide best balance between latency and performances. Figure 9
depicts the turbo decoding performances versus data block length.

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

B
E

R

QPSK, K=512, 3 iterations

infinite precision

finite precision

Fig. 6 – Infinite vs. finite precision.

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

B
E

R

QPSK, K=512, 3 iterations

AWGN

Rayleigh

Fig. 7 – AWGN vs. Rayleigh channel.

9 Field programmable gate array implementation of a turbo decoder 171

-3 -2 -1 0 1 2 3
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

B
E

R

QPSK, K=512, AWGN

iter=1

iter=2

iter=3
iter=4

iter=5

Fig. 8 – Variation vs. number of iterations.

-3 -2 -1 0 1 2 3
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

B
E

R

QPSK, 3 iterations, AWGN

K=40

K=512
K=6144

Fig. 9 – Variation vs. data block length.

6. CONCLUSION

This paper presented in the first part the principles of LTE turbo coding and
the general turbo decoding scheme. For the decoding algorithm, max log MAP
equations were then presented. Based on these equations, an efficient FPGA
implementation solution for an LTE turbo decoder was proposed. The main two
blocks of the architecture were the interleaver and the SISO decoding unit. For the
interleaver, a simplified scheme was proposed, based on the usage of 3 similar
accumulators and one pipe-line radix-2 non-restoring integer divisor. Even for this
simplified scheme, our team continues the efforts to reduce the complexity, mainly
provided by the divider, by splitting the related arithmetic so that modulo result to
be maximum 2, scenario that requires simplified division scheme. The second
block, the SISO decoding unit, was implemented in an efficient manner by taking
advantage on the repetitive max log MAP equations for computing branch metrics,
the backward metrics and the forward metrics.

 Cristian Anghel, Cristian Stanciu, Constantin Paleologu 10

172

The obtained decoding performances were provided, pointing on one hand
the small degradation introduced by a 10 bits numerical representation format, and
on the other hand comparing the simulation results when the radio environment
was changed, when the transmission parameters were modified and when the
decoding setting were also changed.

Received on December 6, 2014

ACKNOWLEDGMENTS

The work has been funded by the Sectoral Operational Programme Human
Resources Development 2007–2013 of the Ministry of European Funds through the
Financial Agreement POSDRU/159/1.5/S/134398.

REFERENCES

1. C. Berrou, A. Glavieux, Near optimum error correcting coding and decoding: Turbo-Codes, IEEE
Trans. Communications, 44, 10, pp. 1261–1271, 1996.

2. C. Berrou, M. Jézéquel, Non binary convolutional codes for turbo coding,Electronics Letters, 35, 1,
pp. 9–40, 1999.

3. C. Berrou, A. Glavieux, P. Thitimajshima, Near Shannon limit error-correcting coding and
decoding: Turbo Codes, IEEE Proceedings of the Int. Conf. on Communications, Geneva,
Switzerland, 1993, pp. 1064–1070.

4.*** Third Generation Partnership Project, 3GPP home page www.3gpp.org
5. F. Khan, LTE for 4G Mobile Broadband, Cambridge University Press, New York, 2009.
6.*** 3rd Generation Partnership Project; Technical Specification Group Radio Access Network;

Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding
(Release 8), Technical Specification, 3GPP TS 36.212 V8.7.0 (2009–05).

7. S. Chae, A low complexity parallel architecture of turbo decoder based on QPP interleaver for
3GPP-LTE/LTE-A, http://www.design-reuse.com/articles/31907/turbo-decoder-architecture-
qpp-interleaver-3gpp-lte-lte-a.html

8.*** Xilinx Virtex 5 family user guide, www.xilinx.com.
9.*** Xilinx ML507 evaluation platform user guide, www.xilinx.com
10. P. Robertson, E. Villebrun, P. Hoeher, A Comparison of Optimal and Sub-Optimal MAP

Decoding Algorithms Operating in the Log Domain, Proc. IEEE International Conference on
Communications (ICC’95), Seattle, 1995, pp. 1009–1013.

11. C. Vladeanu, S. El Assad, Hybrid Maximum-Likelihood Detector for Trellis Coded Spatial
Modulation, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 57, 4, pp. 383–393, 2012.

12. J. F. Cheng, T. Ottosson, Linearly approximated log-MAP algorithms for turbo decoding, Vehicular
Technology Conference Proceedings, VTC 2000, Tokyo; IEEE 51st, 3, pp. 2252–2256, 2000.

13. S. Papaharalabos,P. Sweeney, B.G. Evans, Constant log-MAP decoding algorithm for duo-binary
turbo codes, Electronics Letters, 42, 12, pp. 709–710, 2006.

14. J. H. Han, A. T. Erdogan, T. Arslan, High Speed Max-Log-MAP Turbo SISO Decoder
Implementation Using Branch Metric Normalization, Proceedings of the IEEE Computer
Society Annual Symposium on VLSI New Frontiers in VLSI Design, May 2005.

11 Field programmable gate array implementation of a turbo decoder 173

15. M. C. Valenti, J. Sun, The UMTS Turbo Code and an Efficient Decoder Implementation Suitable
for Software-Defined Radios, International Journal of Wireless Information Networks, 8, 4,
2001.

16. C. Anghel, A. A. Enescu, C. Paleologu, S. Ciochina, CTC Turbo Decoding Architecture for H-ARQ
Capable WiMAX Systems Implemented on FPGA, Ninth International Conference on Networks
(ICN 2010), Menuires, France, April 2010.

17. Jen-Shiun Chiang, Eugene Lai, Jun-Yao Liao, A Radix-2 Non-Restoring 32-b/32-b Ring Divider
with Asynchronous Control Scheme, Tamkang Journal of Science and Engineering, 2, 1, pp. 37–43,
1999.

18.*** http://www.xilinx.com/products/intellectual-property/Divider.htm

