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A PROBABILISTIC MODEL FOR POWER GENERATION            
ADEQUACY EVALUATION 
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The basic function of a modern electric power system is to supply the system load 
requirements as economically as possible and with a reasonable degree of reliability 
and quality. In power system generation planning, many models and techniques have 
been developed to evaluate the reliability performance. The objective of this paper is to 
develop a probabilistic model for power generating system reliability performance 
evaluation, based on the convolution technique. 

1. INTRODUCTION 

The quality and availability required of electrical energy is directly related to 
the power system reliability concept. The reliability associated with a power 
system, in a general sense, is a measure of the overall ability of the system to 
generate and supply electrical energy. Due to the complexity of the electric power 
system, it is divided into functional areas namely generation, transmission and 
distribution. Reliability of each functional area is usually analyzed separately for an 
easier evaluation and eventually combined to assess the system reliability. 

The electricity has a characteristic due to the fact that it can’t be stored in the 
system for long time and important quantity. As a result, electricity must be used 
when it is produced and generated there and then when there is demand. Therefore, 
generating systems are designed and operated in order to meet the demand load of 
the system with a certain reliability level. Generating system reliability is used to 
evaluate the capacity of the generating power system to satisfy the total system 
load. The reliability assessment of a power generating system can be divided into 
two main aspects: system adequacy, which is related to the existence of sufficient 
facilities to satisfy system load demand, and system security, which is related to the 
ability of the system to respond to dynamic or transient disturbances.  

Load demand can exceed the generating capacity for two main reasons. First, 
if there is a very high load peak demand that exceeds the installed capacity of the 
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system, the system cannot supply the load peak. Second, if some generating 
capacity units are out of service because of failures or periodic maintenance, a high 
load peak demand that does not exceed the installed capacity of the system can 
exceed the available capacity at that moment. 

In this paper, the authors focus on an evaluating model for the generating 
system adequacy, having in view the behaviour of generating units. The developed 
model is based on the combination of random variables that describe the generating 
capacity and system load demand and, finally compared with the results of the 
other models or simulation techniques. 

2. GENERATING SYSTEM ADEQUACY INDICES 

The adequacy associated to a generating power system, in a general sense, is 
a measure of the ability of system generating capacity to satisfy the total system 
load. Generally, the generating power system evaluation process does not consider 
the transmission and distribution systems, only concentrates on the balance 
between generating capacity and load demand. The approach to generating 
adequacy evaluation is to develop a capacity model for all the capacity from the 
system and to join this with an established load model.  

The most popular indices used in generating power system are the Loss of 
Load Expectation and the Loss of Energy Expectation, which have to base the Loss 
of Load Probability (LOLP) [1, 2].  

The Loss of Load Expectation (LOLE) [hours/year] indicates the average 
number of hours in a given period (usually one year) in which the load is expected 
to exceed the available generating capacity. It is obtained by calculating the loss of 
load duration in hours for that daily peak demand exceeding the available capacity 
for each day and adding these times for all the days for a number of sample years. 

The Loss of Energy Expectation (LOEE) [MWh/year], sometime known as 
the Expected Energy Not Supplied (EENS), specifies the expected energy that will 
not be supplied by the generation system due to those occasions when the load 
demanded exceeds the available generating capacity. 

Other indices can be defined as generating system reliability performance 
measures, such as: Expected Loss of Load Frequency [occurrences/year], Expected 
Duration of Loss of Load [hours/occurrence], Load Not Supplied per Interruption 
[MWh/occurrence], Expected Energy Not Supplied per Interruption 
[MWh/occurrence], Energy Index of Reliability [%], and others. Frequency and 
duration of loss of load are a basic extension of the LOLE index, in that they 
identify the average frequency and the average duration of the occurrence, for a 
certain period (usually one year).  
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3. A PROBABILISTIC MODEL FOR GENERATING ADEQUACY  

The basic approach to evaluate the adequacy of an electrical power 
generating system consists of two parts: capacity model and load model. The 
capacity and load models are joined using a probabilistic model which evaluates 
the reliability performance of the generating system in terms of adequacy indices.  

This problem can be analyzed like the problem of interference of the stress-
strength random variable model, described in many areas of reliability [3, 4]. 
Mathematically, the interference model conducts to a joined variable of the two 
random variables of generating capacity and load demand, as is showed in Fig. 1. 

 

 

Fig. 1 – The interference model of the generating capacity and load demand. 

The interference model depends on the nature of random variables involved 
in model, continuous or discrete. The stress-strength interference model and its 
practical evaluations were developed, examined and presented by authors in many 
others papers [5, 6]. In this paper, both variables have multiple power [MW] levels, 
with each level having a probability of occurrence, so that these variables can be 
modelled as discrete random variables. 

The generation system adequacy indices can be obtained by observing the 
joined variable called the available capacity margin, and defined like the difference 
between available generating capacity C and load demand L variables [7]. A positive 
margin denotes that the system generation is sufficient to meet the system load, while 
a negative margin implies that the system load is not served. 

The LOLP is a widely used indicator, as a criterion for generation system 
reliability, because it indicates the probability of the load to exceed the generating 
capacity of a proposed generation power system, during a given time interval.  
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where C is a discrete random variable representing the available generating capacity 
and L is a discrete random variable of the load demand. In equation (1), Pr(Li) is the 
probability of the ith load level (Li) and NL the number of the load levels in the load 
probability function. Pr(Cj) is the probability of the jth generation capacity level (Cj) 
and NC the number of the generation capacity levels in the generation capacity 
probability function. Iij is an indicator function defined as   

{ }0, if ; 1, ifij i j i jI L C L C= ≤ > . 

The LOLP index is assessed only for the area in which load exceeds capacity, 
such the previous relationship can be rewritten as: 
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where M=C–L is a discrete random variable representing the available capacity 
margin. The Pr(Mk) is the probability of the kth available capacity margin level (Mk) 
and N is the number of the available capacity margin levels from negative margin 
area. The FM(M) is the cumulative distribution function of M variable. A relationship 
between the probability function, cumulative distribution function of the available 
capacity margin variable, respectively the LOLP index is presented in Fig. 1. 

In power generating system, sometimes others adequacy indices are necessary, 
beside the LOLP. It is important to know how many times the load exceeds the 
available generating capacity, or how much energy has been lost due to interruption.  
The LOLE and LOEE indices can be expressed using the LOLP and expected values of 
available capacity margin in negative margin area, for a given period using the 
following relationships:  
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where T is the total number of hours from analysed period, Mi and Pr(Mi) have been 
defined for equation (2). 

In the following, is presented a procedure for determining the available capacity 
probability function for a various number of capacity units, respectively to establish a 
load probability function, that combined to estimate the adequacy indices. The 
quantitative adequacy evaluation invariably leads to a data required supporting such 
studies, so, for our study we will use the IEEE Reliability Test Systems (IEEE-RTS), 
developed by the Subcommittee on the Application of Probability Methods in the 
IEEE Power Society, to provide a common test system which could be used for 
comparing the results obtained from different methods, available to [8].  
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The IEEE-RTS generation system is composed by a combination of 32 
generation units ranging from 12 MW to 400 MW. Generation system data 
contains the type of generation units, rated capacity [MW] and number of each 
units, respectively the reliability data as mean time to failure (MTTF ) and mean 
time to repair (MTTR), in hours. 

The capacities of each generation units can be modelled like a discrete 
random variable. Let Ck be a discrete random variable representing the capacity 
that can be supplied by the kth generation unit, with k = 1, …, 32. Is assumed that 
each unit has two possible working states, down and up. The random variable can 
be described by its associated probability function that contains all the capacity 
states, in an ascending order, and its probabilities: 

{ }kkk pCUq ×× ,0 ,     (4) 

where: 
− CUk  is the rated capacity of kth generation Unit (it is used CUk, not to be 

confused with Ck, the generation capacity level of discrete random 
variable C); 
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 is probability that available capacity of 

kth generation unit to be rated capacity, CUk [MW]. 
From the probability theory, it is known that the sum of two random variables (C1 
+ C2) is a new random variable, with probability that both unit 1 and unit 2 to be 
simultaneously in operation during a specified period of time. New random 
variable can be obtained by convolving the both random variables: 

 C = conv (C1, C2), (5) 

described by its associated probability function: 

  { }212121221121 )(,,,0 ppCUCUpqCUqpCUqq ⋅×+⋅×⋅×⋅× .    
(6) 

So, all the capacity generation units can be modelled as discrete random 
variables and the capacity generation system for the whole system is a new random 
variable described by: 

C = conv (C1, C2,…, C32 ).         (7) 

The capacity probability function may be computed using the gradual 
convolution for all units of system. After convolving all 32 discrete random 
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variables of the generation units, it is obtained the following random variable for 
the IEEE-RTS generating system (Fig. 2). 

 

Fig. 2 – IEEE-RTS available capacity probability function. 

The load demand in power systems is variable in time. There is no one 
unique profile or mathematical equation that can be adopted to represent the load 
characteristic curve. In this paper, the load characteristic curve has been modelled 
using the load model of IEEE-RTS. The annual load curve, included in IEEE-RTS, 
considers the seasonal, weekly, daily and hourly peak of load. The hourly load is 
percentage of daily peak, the daily peak load is percentage of weekly peak and 
weekly peak load is percentage of annual peak for three seasons, so the hourly load 
dependents by three indices (i,j,k). The index i represents a certain hour of the day, 
the index j represents a certain day of the week, and the index k represents a certain 
week of the year, respectively. The hourly load level HL(i,j,k) can be obtained from 
multiplication the three percentages of the peak of load, as:   

[ ]( , , ) pr_hour( ) pr_day( ) pr_week( ) annual_peak _of_loadi j k i   j  k= × × ×HL , (8) 

where: 
pr_hour(i)(%) is the percentage of ith hour from the daily peak of load, 
i = 1,...,24;  
pr_day(j)(%) is the percent of jth day from the weekly peak of load, j = 1,..,7; 
pr_week(k)(%) is the percent of kth week from the yearly peak of load, 
k = 1,...,52. 
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The final hourly load for one year HL, can be described like a discrete 
random variable, with 8,736 hourly load levels (24 hours/day × 7 days/week × 
52 weeks/year), having the following probability function: 

( ) ( ) ( )( ){ }( , , ) Pr hour of day Pr day of week Pr week of yeari j k i j k× ⋅ ⋅HL (9) 

Taking into account that some hourly load levels may have the same values, 
the probability of any value of HL variable, can be evaluated using the count 
number of the discrete random variable levels with the same values. For that, the 
authors have been developed a Matlab-Simulink function that allowed 
determination of the probability function associated of the discrete random variable 
of IEEE-RTS hourly load, as is shown in Fig. 3. 

 

 

Fig. 3 – IEEE-RTS hourly load probability function. 

Capacity margin is the amount by which generating capacity exceeds system 
load demand, expressed as a discrete random variable. The available capacity 
margin variable results from difference of generating capacity and load demand 
variables, and its probability function arises from the load-capacity probability 
functions interference. The probability function of capacity margin variable is 
presented in the Fig. 4. 
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Fig. 4 – The available capacity margin probability function. 

4. STUDY RESULTS 

The Matlab program based on available capacity margin variable has been 
developed to compute the LOLP, LOLE and LOEE indices using the relations (2–3). 
The program results of previous model have been compared with results from other 
model. Sequential Monte Carlo simulation has been used to provide information 
relates to the average values of the adequacy indices. This technique generates a 
chronological operating cycles for each generation unit. The simulation is done by 
using the MTTF and MTTR parameters to produce two sequence of up and down 
times, necessary to estimate the chronological operating unit's cycles. The 
generating system operating model can then be obtained by combining the 
operating cycles of all units. The required adequacy indices may be observed from 
the overlapping generation operating model to a chronological load curve, over a 
long time period. The simulation can be stopped when a specified degree of 
confidence has been achieved. Figure 5 shows an example of LOLE and LOEE 
indices evaluation, using  the sequential Monte Carlo simulation, for 10,000 sample 
years, necessary to ensure the convergence process. 

The IEEE-RTS generating system adequacy indices provided by probabilistic 
model and sequential Monte Carlo simulation are shown in Table 1.  For a better 
comparison between models, three levels of annual peak of load were considered in 
the adequacy indices evaluation. It can be seen that the results obtained from both 
methods are very close. The probabilistic method provides comparative results 
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with Monte Carlo simulation, but the computing time is considerably less than the 
simulation technique, requiring fewer CPU resources. 

 

 

Fig. 5 – Results from sequential Monte Carlo simulation: a) LOLE [103 h/yr]; b) LOEE [MWh/yr]. 

 
The proposed model may be used in a generation source planning, to analyze 

different adding new generation unit scenarios and select the suitable sources as the 
generation system to meet a load growth, maintaining the same level of adequacy. 

Table 1 

 IEEE-RTS Generating system adequacy indices 

Index LOLP [%] LOLE [h/yr] LOEE [MWh/yr] 
Annual peak 
load [MW] 2750 2850 2950 2750 2850 2950 2750 2850 2950 

Probabilistic 
model 

55.841 
× 10-3 

109.421 
× 10-3 

201.765 
× 10-3 4.878 9.559 17.626 566.950 1171.50 2331.60 

Monte Carlo 
Simulation 

55.058 
× 10-3 

108.219 
× 10-3 

199.823 
× 10-3 4.810 9.454 17.457 559.620 1158.80 2311.30 

 
For IEEE-RTS case study, if the system with 2,850 MW annual peak of load 

is considered having an acceptable adequacy level, the developed model may be 
used to establish the best solution for generating system expansion, assuming an 
annual peak load growth.  It is assumed that the annual peak load of the IEEE-RTS 
system is increased with 100 MW, from 2,850 MW to 2,950 MW. So, the LOLE 
and LOEE indices increase from 9.559 h/yr and 1171.5 MWh/yr for base case (with 
2,850 MW peak load) to 17.626 h/yr, respectively 2,331.6 MWh/yr for the new 
annual peak of load (2,950 MW). The 100 MW growth of peak of load may be 
supplied from different adding new generation unit scenarios, until the LOLE and 
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LOEE indices decrease under the acceptable adequacy level, as is presented in 
Table 2. It shows the adequacy indices for all possible adding generation unit 
scenarios, to supply the increased peak of load, having in view various number and 
type of generation units available in IEEE-RTS. As shown Table 2, the scenario of 
adding a 1×50 MW, 1×20 MW and 2×12 MW generation units, leads to a 
minimum added capacity (94 MW). 

Table 2 

Reliability indices for various expansions of IEEE-RTS 

Cases System Added 
capacity [MW]

LOLE  
[h/yr] 

LOEE 
[MWh/yr] 

1 IEEE-RTS with 8×12 MW 96 9.0120 1 123.3 
2 IEEE-RTS with 5×20 MW 100 9.3306 1 166.2 
3 IEEE-RTS with 2×50 MW 100 8.6911 1 080.8 
4 IEEE-RTS with 1×100 MW 100 8.9763 1 120.8 
5 IEEE-RTS with 1×20+7×12 MW 104 8.6396 1 069.3 
6 IEEE-RTS with 2×20+6×12 MW 112 8.2240 1 017.6 
7 IEEE-RTS with 3×20+3×12 MW 96 9.3615 1 170.7 
8 IEEE-RTS with 4×20+2×12 MW 104 8.9712 1 114.6 
9 IEEE-RTS with 1×50+1×20+2×12 MW 94  9.1828 1 152.8 
10 IEEE-RTS with 1×50+2×20+1×12 MW 102 8.8513 1 097.6 

5. CONCLUSIONS 

In this paper, a probabilistic model for the power generating capacity 
adequacy evaluation is presented. The main aspect of the probabilistic model is to 
evaluate a random variable that describes the difference between capacity of 
generation units and load demand and it evaluating in the negative domain. 

The model enables the evaluation of the most popular indices in generating 
capacity planning, namely the loss of load probability, loss of load expectation, and 
the loss of energy expectation, respectively. The results were validate using the 
sequential Monte Carlo simulation and found that provided results are very close. 
The model has the advantage that can be easily implemented in computer programs 
and require a computing time considerably less than in the case of simulation 
methods. The developed model can be used not only to evaluate the previous 
mentioned indices, but also may be used in a generation source planning, to select 
the suitable sources as the generation system to meet a load growth, maintaining 
the same level of adequacy level. The probabilistic model can provide more 
significant information for system planning, since they consider probabilistic 
aspects of generating units. The future work to be done will use the probabilistic 
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model presented in this paper in a generation source planning with integrated wind 
energy sources. 
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