
Électronique et transmission de l’information 

Rev. Roum. Sci. Techn. – Électrotechn. et  Énerg.,  57, 2, p. 183–191, Bucarest, 2012 

SECOND ORDER STATISTICS OF THE MIMO κ-µ KEYHOLE 
FADING CHANNELS 

SELENA Z. STANOJCIC1,  MIHAJLO C. STEFANOVIC2,  STEFAN R. PANIC3,   
SABAHUDIN MEKIC4,  GORAN POPOVIC5 

Key words: Level crossing rate (LCR), Average fade duration (AFD), Keyhole 
multiple-input and multiple-output (MIMO) fading channels, κ-µ 
fading, Multiplicative fading. 

In this paper novel analytical closed-form expressions for the level crossing rate (LCR) 
and the average fade duration (AFD) of the double κ-µ random process are presented. 
Capitalizing on them, second order statistics of multiple input multiple output keyhole 
fading channels with space-time block coding (STBC) are analyzed. Numerically 
obtained results are graphically presented to show the effects of various parameters 
such as the fading severity and number of transmit/receive antennas on the overall 
system’s performances. 

1. INTRODUCTION 

MIMO (multiple-input and multiple-output) communication technique, is 
based on multiple antennas usage at both the transmitter and receiver for the 
purpose of improving communication performances. It has recently attracted 
attention in wireless communications, because it offers significant increases in data 
throughput and link range without additional bandwidth or transmit power by 
achieving higher spectral efficiency (more bits per second per hertz of bandwidth) 
and link reliability or diversity (reduced fading). Capitalizing on these properties, 
MIMO is an important part of modern wireless communication standards such as 
IEEE 802.11n (Wifi), 4G, 3GPP Long Term Evolution, WiMAX and is also 
planned to be used in such as recent High-Speed Packet Access plus (HSPA+) and 
Long Term Evolution (LTE) [1–3]. 
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MIMO communications systems potentials are not always reachable even for 
a fully uncorrelated transmit and receive channels. It has been shown that for some 
environments, the performances of wireless MIMO systems can become very low, 
even for uncorrelated signals. This effect has been termed "keyhole" or "pinhole", 
and is attributed to the rank deficiency of the MIMO channel [4]. The keyhole 
MIMO channels have been discussed through physical examples, considering 
uncorrelated channels with a single degree of freedom [5–6]. It is shown, that 
under the keyhole effect, the entries of the channel matrix H, follow statistics 
described as a product of two independent single-path gains [5].  

Multiplicative fading models have been given special attention for some time, 
because they have been used for keyhole channel modelling of MIMO systems. 
The first order statistical properties of the double Nakagami-m fading model has 
been considered in [7], where the fading between each pair of transmit and receive 
antennas in presence of the “keyhole” is characterized as Nakagami-m fading. In 
[6] analytical solutions for level crossing rate (LCR) and average fade duration 
(AFD) for the double Nakagami-m  model have been determined, and results are 
applied to study the second order statistics of the keyhole channels applicable to 
MIMO systems with space-time block coding (STBC), operating in rich-scattering 
environments. It is assumed that the channels are independent.   

Nakagami fading (m-distribution) describes multi-path scattering with 
relatively large delay-time spreads, with different clusters of reflected waves [8]. It 
provides good fits to collected data in indoor and outdoor mobile-radio 
environments and is used in many wireless communications applications. κ-µ  
fading model was recently proposed [9]. This distribution is more realistic than 
other special distributions, since its derivation is completely based on a non-
homogeneous scattering environment, and is a general physical fading model 
which includes Rayleigh, Rician and Nakagami-m fading models as special cases 
[10]. The model is written in terms of two physical parameters, κ  and µ with µ 
related to multi-path clustering, while the parameter κ denoting the ratio between 
the total power of dominant components and the total power of the scattered waves.  

In this paper analytical results for level crossing rate (LCR) and average fade 
duration (AFD) for this model have been determined, and results are applied to 
study the second order statistics of the keyhole channels applicable to MIMO 
systems with space-time block coding (STBC), operating in rich-scattering 
environments. It is assumed that the channels are independent. Moreover to the 
best of author’s knowledge, no analytical study of switch and stay combining 
involving assumed correlated κ-µ fading model has been reported in the literature. 

2. SYSTEM MODEL 

Let us consider MIMO “keyhole” channel model. Complex path gain of 
baseband equivalent signal transmitted over the channel between the i-th transmit 
and j-th receive antenna at arbitrary moment t  is expressed as [11]:  
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The instantaneous output value of signal-to-noise (SNR) per symbol, after the 
process of space-time block decoding, is given by:  

                           

 ( ) ( ) 2

F
tH

MR
t γ
=γ , (3) 

where 0/ NES=γ  denotes the average SNR value per receive branch, and R is the 
rate of the STBC. 

Let us define auxiliary random process Z(t) by:  
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with Ik( · ) denoting the modified Bessel function of the first kind of k-th order [13] 
with M denoted with L1 and N denoted with L2. The time derivatives X  and Y  are 
independent from X and Y, respectively, and both follow the zero-mean Gaussian 
PDF with variances given above. Therefore, the random process Z(t), defined by 
(4), is a double κ-µ process for which an exact and approximate LCR and AFD is 
obtained. The LCR and the AFD of instantaneous output SNR, given by (4) are 
respectively given by: 

 ( ) ( )γγ=γγ /MRTNN z , (7) 

 ( ) ( )γγ=γγ /MRTT z , (8) 

with Z and γ defined as in (3) and (4). 

3. ON THE SECOND ORDER STATISTICS OF THE OUTPUT SNR 

The LCR of Z at threshold z is defined as rate at which the random process 
crosses level z  in the negative direction. To extract LCR, we need to determine the 
joint PDF of Z  and Z , ( )zzf ZZ , , and apply the Rice’s formula:                     

 ( ) ( ) zzzfzzN ZZZ d,
0∫
∞

= . (9) 
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with Г(x) denoting the Gamma function [13]. Using some software the above 
integral can be evaluated numerically with desired accuracy. On the other side, 
applying Laplace approximation allows obtaining a highly accurate closed-form 
solution of the expression (13), and that is presented in the following subsection. 

Average fade duration (AFD) of the random variable Z  is defined as the 
average time that the double κ-µ process remains below level z after crossing that 
level in negative direction:  

 ( ) ( )
( )zN
zFzT

z

z
z = , (14) 
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where Fz(Z) denotes the cumulative distribution function of Z . For the double κ-µ  
random process, it attains the form:  
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where G [ ] denotes and Meijer’s functions [13]. Using [14], Laplace type integral 
can be approximated as:  
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when the real-valued parameter λ is large. In (12) f(x) and g(x) are real-valued 
functions of x , and 0x  is the point at which f(x) has an absolute minimum (interior 
critical point of f(x)). f′′(x) is the second derivative of f(x) with respect to x . Since 
the above expression provides very accurate results even for small values of λ  
[13],  f(x) and g(x) are set as:  
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and λ = 1. The critical point of f(x) is determined as a value of x , for which  
∂f /∂x = 0,  
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Using expressions for f(x), g(x), and 0x , the approximate closed-form solutions for 
LCR and AFD for double κ-µ process is obtained:  
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4. NUMERICAL RESULTS 

Numerical results obtained for the LCR of the STBC MIMO 
communications system operating over a keyhole fading channel are presented 
at Figs. 1 and 2. It is assumed that the mobile transmitter and mobile receiver 
introduce same maximum Doppler shifts due to same relative speeds with 
respect to the “keyhole”, yielding  fα = fβ = fd. Normalized LCR (Nz /fd) of the 
instantaneous output SNR is depicted vs. normalized SNR threshold, calculated 

as ( )( )( )10log / / /x T y RMR γ γ Ω µ Ω µ  .  

At Fig. 1, the results are presented for four different pairs of numbers of 
transmit and receive antennas (M, N), including the SISO (single input single 
output) case.  

As it was expected better performances (smaller LCR values) are obtained 
when higher number of transmit/receive antennas are used. From Fig. 2 is 
obvious that for higher values of κ-µ fading severity parameter µ and for higher 
values of dominant/scattered components power ratio κ LCR values decrease, 
since for smaller κ and µ values, dynamic in channel is larger. 
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Fig. 1 – Normalized LCR for various values of transmit and receive antennas. 

 

Fig. 2 – Normalized LCR for various values of fading severity parameters κi and µi. 
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5. CONCLUSIONS 

An approach to the performance analysis of multiple input multiple output 
keyhole fading channels with space-time block coding is presented in this paper. 
Second order statistics of the instantaneous output SNR, i.e. the LCR and AFD, are 
given in the infinite series expressions form. Numerically obtained results were 
graphically presented and discussed in order to point out the effects of fading 
severity and number of transmit/receive antennas on the overall system’s 
performances. Our analysis has high level of generality because it has been done 
for case of κ-µ distribution, which includes as special cases other important 
distributions, such as Rayleigh, Rician, and Nakagami-m.  
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