
Automatique et ordinateurs

ADAPTIVE RETRAINING ALGORITHM
WITH SHAKEN INITIALIZATION

DUMITRU IULIAN NASTAC1, IONEL BUJOREL PĂVĂLOIU2, RODICA TUDUCE2,
PAUL DAN CRISTEA3

Key words: Artificial neural networks, Retraining, Time series, Shaken parameter.

The paper presents new specific aspects that could improve the adaptive retraining
procedure of artificial neural networks (ANNs) for time series predictions. Usually, a
retraining step starts from proportionally reduced values of the parameters (weights)
used in the previous version of the ANN model. This time, the initial configuration of
the weights is randomly “shaken” in order to further improve the model. The present
results are promising and show a better adaptation of the forecasting system in a
nonstationary environment.

1. INTRODUCTION

The adaptive retraining technique, based on feedforward artificial neural
networks (ANNs), was firstly proposed in 2004 [1] as an enhancement of the
forecasting method developed by Iulian Nastac and Adrian Costea for the EUNITE
Competition 2003 [2]. Then, it was used in various applications that concern a
wide range of data [3–6], including nucleotide genomic signals [7, 8] for special
predictions where there are spatial sequences instead of time series. In this paper, a
new feature is added to the original model, by reconsidering the initial distribution
of the weights before each retraining phase. In literature, other approaches
concerning data prediction using artificial intelligence are in many fields such as
load forecasting [9], speech signal [10] or technical applications [11]. Since the
adaptive retraining technique already proved its worth even in an international
competition on data forecasting [2], here we are not focused to compare it with
other predictive models, but we want to see if a special modification could enhance

1 “Politehnica” University of Bucharest, Dept. of Electronics, Telecom. and IT, O.P. 16, C.P. 77,

061112 Bucharest, Romania (corresponding author – phone: + 40-721-485426; e-mail: nastac@ieee.org).
2 “Politehnica” University of Bucharest, Bio-Medical Engineering Centre, Splaiul Independenţei

313, 060042 Bucharest, Romania.
3 “Politehnica” University of Bucharest, Bio-Medical Engineering Centre, Splaiul Independenţei

313, 060042 Bucharest, Romania (corresponding author – phone: +40-745-117062; e-mail:
pcristea@dsp.pub.ro).

Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 58, 1, p. 101–111, Bucarest, 2013

102 Dumitru Iulian Nastac et al. 2

the model accuracy. The data that are used in this paper are time series from
electrical load domain.

The paper is further organized as follows: Section 2 presents the structure of
the prediction model and describes aspects of its implementation, Section 3 gives
some of the experimental forecasting results, and Section 4 concludes the paper.

2. ALGORITHM DESCRIPTION

The retraining algorithm is well suited in forecasting applications, where
there is a huge amount of data. Next, we will provide a brief description of the
entire procedure and particularly on the issues that concern the weight
initialization, which precede the effective retraining phases.

Fig. 1 – General architecture of the forecasting model used during the training process.

The data that are used in this paper refer to the implementation of a short
term electric load forecasting system. We expect that time-delays could be
encountered among the data in the input matrix. It is well known that feedback
control in the presence of time delays can lead to difficulties since it places a limit
on the time interval. Moreover, the electric load forecasting is inherently
nonstationary, i.e., the distribution of the time series changes over time.
Furthermore, gradual changes in the dependency between the input and output
variables may occur. Specifically, the recent data points could provide more
important information than the distant data points. The model used in our approach
is based on a feedforward ANN and it is represented in Fig. 1.

3 Adaptive retraining algorithm with shaken initialization 103

The output at a moment t is determined in terms of the inputs at a set of
previous moments (t - i_d1, …, t - i_dn), as well as of the outputs at other set of
moments (t - o_d1, …, t - o_dm). The prediction model is thus defined by two delay
vectors that comprise the delays:

]_,...,_,_[_ 21 ndididiDelIn = (1)
and

 []mdododoDelOut _,...,_,__ 21= , (2)

where, usually, n > m and i_dn significantly exceeds o_dm.
Typically, the model uses a huge number of inputs. Fortunately, this number

can be reduced drastically by employing a step of principal component analysis
(PCA) [12, 13] at the input of the ANN. The preprocessing block, from Fig. 1,
normalizes all the input data before operating the PCA, while the postprocessing
block executes a denormalization of the ANN output. After PCA we keep about
99.99% of initial information (which it means that the model usually preserves first
eigenvectors that are able to reproduce the most valuable data). It is assumed that
the PCA block acts as a filter for the outliers data. Finally, the recurrent relation
performed by the general model that predicts the output is:

)))(_()),(_1(()1(jDelOuttyiDelIntXFtyk −−+=+ , (3)

where X is the input vector, y – the output, with i = 1,.., n and j = 1,.., m.
Based on our previous experience, we have used the scale conjugate gradient

(SCG) algorithm [14] as training algorithm. We have applied the early stopping
method (validation stop) during the training process to avoid the overfitting
phenomenon. The set of available data was split randomly in approximately 85%
of the data for training and the rest for validation. In our approach, the validation
set also acts as a test set, even if there is a separate test set containing T different
moments (T<<V, where V is the initial set of time moments employed for training
purpose). As mentioned, the SCG algorithm has been used for training (and then
retraining) of the ANN, even if it is not the fastest one. Its great advantage is that it
works very efficiently for networks with a large number of weights, does not
require large computational memory, has a good convergence and it is very robust.
Furthermore, as we always use the validation stop during the training, it is better to
avoid algorithms that converge too rapidly, such as Levenberg-Marquardt (LM)
[15]. The SCG is better suited for validation stop method. Nevertheless, it is quite
easy to replace the SCG algorithm with another one, since the adaptive retraining
technique is flexible and independent of the training algorithm.

An iterative procedure was used to find the best architecture of the ANN. The
proper number of hidden neurons for each hidden layer (Nh1 and Nh2) has been
found by testing several pyramidal ANN architectures (following the rules
described in [1]). We have chosen the best model as the one that gave the smallest

104 Dumitru Iulian Nastac et al. 4

error between the desired and the simulated output. This error (Etot) was calculated
for V data, which included both the training and validation sets.

The process of searching for the best ANN architecture is quite long since it
implies imbricated loops, which change: the numbers of neurons for each layer, the
starting points for the initial distribution of the weights, and the randomly
established training and validation data sets. When the searching is completed, the
ANN architecture remains unchanged, and only the network weights are
recomputed during each retraining processes.

The novelty introduced by this paper concerns an aspect of the retraining
procedure, which allows a fast recalibration of the ANN for the newest acquired
data in a nonstationary environment. In our previous approaches, the reference
network weights were reduced with a scaling factor γ (0 < γ < 1) and further used
as the initial weights of a new training sequence, with the expectation of a better
accuracy. Here we have to use the ANN weights that resulted at the end of the
previous step. Usually, we applied successively this technique for nine discrete
values of γ (γ = 0.1, 0.2, …, 0.9), keeping the ANN weight distribution that
achieved the minimum error as the reference network. We repeated this step
several times (by using the parameter Nrep), and we randomly reconstructed the
training and validation sets for each retraining step. For statistical reason, the value
of the parameter γ, which achieve the best result, can be stored at each step. Now
we want to enhance this approach by using a shaking parameter (Qshake) of the
initial weights. There will be a double loop that will control this process:

for i = 1: Nrep
 for j = 0.1:0.1:0.9

 Netnew_weights = Netprevious_weights ·(j + Qshake·(rand(1)–0.5)); (4)
….

where Qshake has a small value (Qshake << j) in order to not disturb too much the
values of the weights after theirs rescaling. Notice that the shaking is made with
small positive and negative values around zero.
 Furthermore, the shaking of weight positions could be gradually made,
from no shaking at i = 1 to the maximum shaking for i = Nrep, as following:

for i = 1: Nrep
 for j = 0.1:0.1:0.9

Netnew_weights = Netprevious_weights ·(j + Qshake·(i-1)·(rand(1)–0.5)); (5)
….

Afterwards, we can apply the retraining technique for a shifted interval of
data. The parameter Shift represents the number of time steps used to shift the
entire interval of data from which we establish both the training and validation sets.

At the end of each complete retraining phase, we predict T values of the
outputs, in a sequential mode. To estimate the efficiency of the forecasting model,

5 Adaptive retraining algorithm with shaken initialization 105

we have computed the error ERR [1, 2], which represents the accuracy of the
approximation of the output data within the forecasting horizon of T steps:

 ∑
= +

⋅
−

=
T

p Rp

FpRp

pT
T

O

OO

T 1

100ERR , (6)

where T is the number of time steps, ORp – the real output at step p, and OFp – the
forecasted output at step p. In this formula, the more recent errors in the individual
estimations have a larger contribution to the global prediction error (ERR) than the
ones which are farther distanced in future.

Next, we will see if these modifications could affect the achieved results.

3. EXPERIMENTAL RESULTS

The data used in our experiments consist of a set of time series that describe
the hourly evolution, during several years, of the power consumption in Romania
and also the actual production for different energy sources such as coal, hydro, oil,
nuclear, wind, and solar. We performed the steps described in Section 2 for the
following combination of the delay vectors: In_Del = [1 2 4 7] and Out_Del = [0 1
3]. This way by keeping 99.99% of initial information, the PCA block reduced the
number of the inputs, before the ANN, from initial 43 lines to only 25. Our goal is
to predict the energy consumption in advance with one hour, to allow the system
dispatcher to prepare an optimum supply. The inputs of the system are information
concerning data from different suppliers of electricity together with time marks
(hour, month calendar, year). There are three cases that we want to analyze in this
paper: classic retraining (without shaking), retraining with shaking by using the
reinitialization from (4), and, finally, retraining with shaking when employing (5).

We carried out the simulations under the following assumptions: V = 8805
timesteps (more than one year) are enough for both training and then for each
retraining phase; T = 24×7 = 168 hours (one week) represent the prediction
interval; and Shift = 168 is the shifting time for the next retraining. It is worth to
mention that the values of these parameters can be easily changed, if necessary.
Choosing the number of samples for training is still an open issue: it should be not
too small, to have enough data (more than five times the number of samples versus
the number of weights), but not too large, especially in a nonstationary
environment.

The first step, when we choose the ANN architecture, needs about one day of
intensive computation. We used a series of multiple imbricate loops, where we
vary the number of neurons of each layer. If we extend the searching possibilities,
then the computational effort will increase accordingly, but with a greater
expectation for a better solution. The most inner loop of this searching algorithm

106 Dumitru Iulian Nastac et al. 6

concerns the starting of the training from different uniformly distributed weights of
the ANN architecture. We choose to restart five times the last loop for each ANN
architecture, and finally select the model that provides the minimum error, using
the early stop method. The obtained ANN, with 19 and 14 neurons on its hidden
layers, is then used to predict the time horizons in all three cases. This architecture
remains unchanged (as numbers of neurons), but it is successively retrained with a
one week shifted database. A complete retraining phase lasts about ten to thirty
minutes, depending on the available computational resources and their
performance.

0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7

8

9

Retraining steps

ER
R

Fig. 2 – ERR trend (Case I) of test sets for the first training and L = 45 successive retraining phases.

In Fig. 2 we can see the evolution of the error ERR during L = 45 successive
retraining phases. One may note that the abscissa represents the numbers of the
successive retraining phases and the value 0 is associated with the first training. A
descending trend of ERR could be observed when we successively calculated the
mean values of the error (see Table I) for the whole interval (of 46 values), then for
second half, and, finally, for the last quarter of this interval. Here we obtained the
following values: 1.7061, 1.1456 and 1.0831. The descending trend is quite
attenuated at the end of the ERR graph.

Behind each point in the graph from Fig. 2 there is another graph (like in
Fig. 3), which it is associated with the corresponding forecasting time horizon, in
which ERR was computed. The quality of the predictions can be analyzed
graphically, by enforcing a tube around the real outputs, given by a function like
the following one:

 qnAnf ⋅+=)(. (7)

7 Adaptive retraining algorithm with shaken initialization 107

Here, A is an acceptable prediction error, q is an increasing factor and n is the
number of predicted timesteps. The predicted output values should lay in the
interval output(n) +/– f(n), represented with dotted lines in Fig. 3 that shows the
graphs of the energy consumption for the test interval of retraining 35. The real
data are represented with thin lines and the neural network output values with thick
lines. There is a “tube” (dotted lines) around the real data, given by the function
f(n) = 200+0.0005·n (where n = 1 … 168). The abscissa shows the index number
of the corresponding lines in the database when predictions are performed.

1.468 1.47 1.472 1.474 1.476 1.478 1.48 1.482 1.484 1.486

x 10
4

4500

5000

5500

6000

6500

7000

7500

8000

Time instances from 2009/9/29 3 AM to 2009/10/6 4 AM

M
od

el
 o

ut
pu

t
(M

W
)

Fig. 3 – Data forecasting for the test interval of retraining 35 (Case I). ERR = 1.1396.

We noticed that, except for a few situations (retrainings:1, 5, 8 and 9), in
almost all graph representations of the predictions, the trends were well captured,
even better than in the previous example from Fig. 3 (which was preserved just to
show the slight differences between the thin and thick lines).

For the cases II and III it was difficult to find a proper value of the parameter
Qshake. As an example, when Qshake was set tentatively to 0.001, it resulted to be a
too high value, since the ERR increased progresively after successive retrainings
(Fig. 4). In this situation, we were forced to stop the retraining process after only
11 succesive steps. By decreasing this parameter at progressively smaller values,
we finaly obtained a good result for Qshake = 10–8.

Having established a proper value for the shaking parameter, we obtained a
visible improvement in the Case II for the retrainings 8 and 9, as we can easily
observe in Fig. 5, where a comparison of ERR graphs was performed between the
cases I and II.

108 Dumitru Iulian Nastac et al. 8

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10

ER
R

Retraining steps

Fig. 4 – ERR trends for Case II when Qshake was inadequately set to 0.001.

0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7

8

9

Retraining steps

ER
R

Fig. 5 – ERR trends for Case I (thin line) and Case II (thick line).

A further, less spectacular, improvement could be noticed in Fig. 6, where

another comparison of ERR graphs is performed for the cases II and III.
Supplementary, a more intuitive comparison of these three cases is shown in Table
I, where the mean values for whole interval, second half, and last quarter of the
interval (with 46 values) are presented.

9 Adaptive retraining algorithm with shaken initialization 109

0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7

8

9

Retraining steps

ER
R

Fig. 6 – ERR trends for Case II (thick line) and Case III (thin line).

Table 1

The mean values of ERR for whole interval, second half, and the last quarter of the interval

 Case I Case II Case III
mERR whole interval 1.706176 1.429903 1.426344
mERR for second half 1.145609 1.144767 1.134491
mERR for last quarter 1.083165 1.123910 1.075560

We can easily observe in Table I that even if it is a general improvement of
the output accuracy for Case II versus Case I, there is still a slighter higher value of
the mean of the last quarter in Case II. The Case III, which used progressive
shaking, provided the best results. We have to mention that the parameter Nrep was
set to 10 in all cases under discussion.

A comparison with classical approaches, such as the naive or ARMA models
[15], proved the superiority of the proposed model, since it was the only one able
to follow so closely the real shape of the power consumption as we can easily
remark for instance in Fig. 3. Another model proposed in [9] was also far from our
results. In Fig. 7 we can see a comparison of the adaptive retraining technique with
shaken initialization (called ARTIS) versus two standard models, which are an
ADALINE model [16] and a Focused Time-Delay Neural Network (FTDNN) [16].

110 Dumitru Iulian Nastac et al. 10

0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7

8

9

Retraining steps

ER
R

ARTIS - case III
ADALINE
FTDNN

Fig. 7 – Comparison of ERR trends for ARTIS (Case III depicted with thick line) versus ADALINE

(dashed line) and FTDNN (thin line).

It is obvious that the retraining technique outperforms the other two models.

4. CONCLUSIONS

The outcome of this work confirmed an improvement of the adaptive
retraining model when a so called "shaken parameter" was taken into
consideration. We are still looking for a better decreasing trend of the ERR during
more successive retraining steps. In our previous approaches, by using other data
sets, we obtained a visible decreasing trend, even if there we didn't employed the
shaken initialization of the ANN's weights. For the data used in this article, all
three cases show similar graphs, with the clear difference that the last two cases
have stabilized much better the evolution of ERR, even after the first six
retrainings.

Some similarities with the Simulated Annealing algorithm can be noticed, but
here the method works in somewhat opposite way, since the shaking parameter
induces a growing of the disorder among the weights. This parameter must be kept
at small values in order to avoid the disturbance of the forecasting system. Further
research is necessary to establish its proper range of values, in accordance with
each specific set of data.

ACKNOWLEDGEMENTS

We are grateful to Prof. Paul Ulmeanu for the data and helpful discussions.
The work was supported by the Sectorial Operational Programme Human

11 Adaptive retraining algorithm with shaken initialization 111

Resources Development (SOP HRD), financed from the European Social Fund and
by the Romanian Government under the contract number SOP
HRD/89/1.5/S/59758.

Received on 29 August, 2012

REFERENCES

1. D.I. Nastac, An Adaptive Retraining Technique to Predict the Critical Process Variables, TUCS
Technical Report, No. 616, June 2004, Turku, Finland. Available:

 http://tucs.fi/publications/view/?pub_id=tNastac04a.
2 J. Strackeljan, K. Lankers, Eunite Competition 2003 – Prediction of product quality in glass

manufacturing process. Summary of the Results and Collection of Reports, Available on:
http://www.eunite.org/eunite/index.htm.

3. D.I. Nastac, P.D. Cristea, An ANN-PCA Adaptive Forecasting Model, Proceedings of IEEE-
IWSSIP 2012, Vienna, Austria, April 2012, pp. 532-535.

4. D.I. Nastac, P.D. Cristea, ANN Flexible Forecasting for the Adaptive Monitoring of a Multi-Tube
Reactor, Proceedings of the IEEE-IWSSIP 2007, Maribor, Slovenia, June 2007, pp. 205-208.

5. D.I. Nastac, E. Dobrescu, E. Pelinescu, Neuro-Adaptive Model for Financial Forecasting,
Romanian Journal of Economic Forecasting, 4, 3, pp. 19-41, 2007.

6. D.I. Nastac, N. Tanase, P.D. Cristea, Smart predictive model for air pollutants, in Proceedings of
GSP 2011 – 2nd International Workshop on Genomic Signal Processing, Bucharest, Romania,
June 27-28, 2011, pp. 131-134.

7. P. D. Cristea, Rodica Tuduce, I. Năstac, J. Cornelis, R. Deklerck, M. Andrei, Signal
Representation and Processing of Nucleotide Sequences, International Journal Functional
Informatics and Personalized Medicine, 1, 3, pp. 253-268, 2008. Available:
http://www.inderscience.com/browse/index.php?journalID=295&year=2008&vol=1&issue=3.

8. P. D. Cristea, Phase and fractal analysis DNA and reoriented reading frame genomic signals,
Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 48, 2-3, pp. 429-440, 2003.

9. M. O. Popescu, Claudia Laurenţa Popescu, Petruţa Mihai, Mid Term Load Forecasting Using
Analog Neural Networks, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 54, 2, pp. 147-
156, 2009.

10. R. J. P. de Figueiredo, A neural-network-based approach to speech signal prediction, Rev. Roum.
Sci. Techn. – Électrotechn. et Énerg., 55, 1, p. 42-48, 2010.

11. C. Oros, C. Rădoi, Adriana Florescu, Comparison among computational intelligence methods for
engine knock detection, Part 1, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 56, 4,
pp. 418-427, 2011.

12. I. Jolliffe, Principal component analysis, 2nd Edition, Springer, NY, 2002.
13. J.E. Jackson, A user guide to principal components, John Wiley, New York, 1991.
14. M.F. Moller, A scaled conjugate gradient algorithm for fast supervised learning, Neural

Networks, 6, pp. 525-533, 1993.
15. M.T. Hagan, H.B. Demuth, M.H. Beale, Neural Networks Design, MA: PWS Publishing, Boston,

1996.
16. M.H. Beale, M.T. Hagan, H.B. Demuth, Neural Networks Toolbox – User's Guide, The

MathWorks, Inc., 2012. Available: www.mathworks.com/help/pdf_doc/nnet/nnet_ug.pdf.

