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The paper presents new specific aspects that could improve the adaptive retraining 
procedure of artificial neural networks (ANNs) for time series predictions. Usually, a 
retraining step starts from proportionally reduced values of the parameters (weights) 
used in the previous version of the ANN model. This time, the initial configuration of 
the weights is randomly “shaken” in order to further improve the model. The present 
results are promising and show a better adaptation of the forecasting system in a 
nonstationary environment. 

1. INTRODUCTION 

The adaptive retraining technique, based on feedforward artificial neural 
networks (ANNs), was firstly proposed in 2004 [1] as an enhancement of the 
forecasting method developed by Iulian Nastac and Adrian Costea for the EUNITE 
Competition 2003 [2]. Then, it was used in various applications that concern a 
wide range of data [3–6], including nucleotide genomic signals [7, 8] for special 
predictions where there are spatial sequences instead of time series. In this paper, a 
new feature is added to the original model, by reconsidering the initial distribution 
of the weights before each retraining phase. In literature, other approaches 
concerning data prediction using artificial intelligence are in many fields such as 
load forecasting [9], speech signal [10] or technical applications [11]. Since the 
adaptive retraining technique already proved its worth even in an international 
competition on data forecasting [2], here we are not focused to compare it with 
other predictive models, but we want to see if a special modification could enhance 
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the model accuracy. The data that are used in this paper are time series from 
electrical load domain.  

The paper is further organized as follows: Section 2 presents the structure of 
the prediction model and describes aspects of its implementation, Section 3 gives 
some of the experimental forecasting results, and Section 4 concludes the paper. 

2. ALGORITHM DESCRIPTION 

The retraining algorithm is well suited in forecasting applications, where 
there is a huge amount of data. Next, we will provide a brief description of the 
entire procedure and particularly on the issues that concern the weight 
initialization, which precede the effective retraining phases. 

 
Fig. 1 – General architecture of the forecasting model used during the training process. 

The data that are used in this paper refer to the implementation of a short 
term electric load forecasting system. We expect that time-delays could be 
encountered among the data in the input matrix. It is well known that feedback 
control in the presence of time delays can lead to difficulties since it places a limit 
on the time interval. Moreover, the electric load forecasting is inherently 
nonstationary, i.e., the distribution of the time series changes over time. 
Furthermore, gradual changes in the dependency between the input and output 
variables may occur. Specifically, the recent data points could provide more 
important information than the distant data points. The model used in our approach 
is based on a feedforward ANN and it is represented in Fig. 1. 
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The output at a moment t is determined in terms of the inputs at a set of 
previous moments  (t - i_d1, …,  t - i_dn), as well as of the outputs at other set of 
moments (t - o_d1, …, t - o_dm). The prediction model is thus defined by two delay 
vectors that comprise the delays: 

                ]_,...,_,_[_ 21 ndididiDelIn =               (1) 
and 

                          [ ]mdododoDelOut _,...,_,__ 21= ,                  (2) 

where, usually, n > m and i_dn significantly exceeds o_dm. 
Typically, the model uses a huge number of inputs. Fortunately, this number 

can be reduced drastically by employing a step of principal component analysis 
(PCA) [12, 13] at the input of the ANN. The preprocessing block, from Fig. 1, 
normalizes all the input data before operating the PCA, while the postprocessing 
block executes a denormalization of the ANN output. After PCA we keep about 
99.99% of initial information (which it means that the model usually preserves first 
eigenvectors that are able to reproduce the most valuable data). It is assumed that 
the PCA block acts as a filter for the outliers data. Finally, the recurrent relation 
performed by the general model that predicts the output is: 

     )))(_()),(_1(()1( jDelOuttyiDelIntXFtyk −−+=+ ,    (3) 

where X is the input vector, y – the output, with i = 1,.., n and j = 1,.., m. 
Based on our previous experience, we have used the scale conjugate gradient 

(SCG) algorithm [14] as training algorithm. We have applied the early stopping 
method (validation stop) during the training process to avoid the overfitting 
phenomenon. The set of available data was split randomly in approximately 85% 
of the data for training and the rest for validation. In our approach, the validation 
set also acts as a test set, even if there is a separate test set containing T different 
moments (T<<V, where V is the initial set of time moments employed for training 
purpose). As mentioned, the SCG algorithm has been used for training (and then 
retraining) of the ANN, even if it is not the fastest one. Its great advantage is that it 
works very efficiently for networks with a large number of weights, does not 
require large computational memory, has a good convergence and it is very robust. 
Furthermore, as we always use the validation stop during the training, it is better to 
avoid algorithms that converge too rapidly, such as Levenberg-Marquardt (LM) 
[15]. The SCG is better suited for validation stop method. Nevertheless, it is quite 
easy to replace the SCG algorithm with another one, since the adaptive retraining 
technique is flexible and independent of the training algorithm. 

An iterative procedure was used to find the best architecture of the ANN. The 
proper number of hidden neurons for each hidden layer (Nh1 and Nh2) has been 
found by testing several pyramidal ANN architectures (following the rules 
described in [1]). We have chosen the best model as the one that gave the smallest 
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error between the desired and the simulated output. This error (Etot) was calculated 
for V data, which included both the training and validation sets. 

The process of searching for the best ANN architecture is quite long since it 
implies imbricated loops, which change: the numbers of neurons for each layer, the 
starting points for the initial distribution of the weights, and the randomly 
established training and validation data sets. When the searching is completed, the 
ANN architecture remains unchanged, and only the network weights are 
recomputed during each retraining processes. 

The novelty introduced by this paper concerns an aspect of the retraining 
procedure, which allows a fast recalibration of the ANN for the newest acquired 
data in a nonstationary environment. In our previous approaches, the reference 
network weights were reduced with a scaling factor γ (0 < γ < 1) and further used 
as the initial weights of a new training sequence, with the expectation of a better 
accuracy. Here we have to use the ANN weights that resulted at the end of the 
previous step. Usually, we applied successively this technique for nine discrete 
values of γ (γ = 0.1, 0.2, …, 0.9), keeping the ANN weight distribution that 
achieved the minimum error as the reference network. We repeated this step 
several times (by using the parameter Nrep), and we randomly reconstructed the 
training and validation sets for each retraining step. For statistical reason, the value 
of the parameter γ, which achieve the best result, can be stored at each step. Now 
we want to enhance this approach by using a shaking parameter (Qshake) of the 
initial weights. There will be a double loop that will control this process: 

 

for i = 1: Nrep 
 for j = 0.1:0.1:0.9 

        Netnew_weights = Netprevious_weights ·(j + Qshake·(rand(1)–0.5));      (4) 
…. 

 

where Qshake has a small value (Qshake << j) in order to not disturb too much the 
values of the weights after theirs rescaling. Notice that the shaking is made with 
small positive and negative values around zero. 
 Furthermore, the shaking of weight positions could be gradually made, 
from no shaking at i = 1 to the maximum shaking for i = Nrep, as following: 

 

for i = 1: Nrep 
 for j = 0.1:0.1:0.9 

Netnew_weights = Netprevious_weights ·(j + Qshake·(i-1)·(rand(1)–0.5));      (5) 
…. 

 

Afterwards, we can apply the retraining technique for a shifted interval of 
data. The parameter Shift represents the number of time steps used to shift the 
entire interval of data from which we establish both the training and validation sets. 

At the end of each complete retraining phase, we predict T values of the 
outputs, in a sequential mode. To estimate the efficiency of the forecasting model, 
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we have computed the error ERR [1, 2], which represents the accuracy of the 
approximation of the output data within the forecasting horizon of T steps: 
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where T is the number of time steps, ORp – the real output at step p, and OFp – the 
forecasted output at step p. In this formula, the more recent errors in the individual 
estimations have a larger contribution to the global prediction error (ERR) than the 
ones which are farther distanced in future.   

Next, we will see if these modifications could affect the achieved results. 

3. EXPERIMENTAL RESULTS 

The data used in our experiments consist of a set of time series that describe 
the hourly evolution, during several years, of the power consumption in Romania 
and also the actual production for different energy sources such as coal, hydro, oil, 
nuclear, wind, and solar. We performed the steps described in Section 2 for the 
following combination of the delay vectors: In_Del = [1 2 4 7] and Out_Del = [0 1 
3]. This way by keeping 99.99% of initial information, the PCA block reduced the 
number of the inputs, before the ANN, from initial 43 lines to only 25. Our goal is 
to predict the energy consumption in advance with one hour, to allow the system 
dispatcher to prepare an optimum supply. The inputs of the system are information 
concerning data from different suppliers of electricity together with time marks 
(hour, month calendar, year). There are three cases that we want to analyze in this 
paper: classic retraining (without shaking), retraining with shaking by using the 
reinitialization from (4), and, finally, retraining with shaking when employing (5).   

We carried out the simulations under the following assumptions: V = 8805 
timesteps (more than one year) are enough for both training and then for each 
retraining phase; T = 24×7 = 168 hours (one week) represent the prediction 
interval; and Shift = 168 is the shifting time for the next retraining. It is worth to 
mention that the values of these parameters can be easily changed, if necessary. 
Choosing the number of samples for training is still an open issue: it should be not 
too small, to have enough data (more than five times the number of samples versus 
the number of weights), but not too large, especially in a nonstationary 
environment.  

The first step, when we choose the ANN architecture, needs about one day of 
intensive computation. We used a series of multiple imbricate loops, where we 
vary the number of neurons of each layer. If we extend the searching possibilities, 
then the computational effort will increase accordingly, but with a greater 
expectation for a better solution. The most inner loop of this searching algorithm 
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concerns the starting of the training from different uniformly distributed weights of 
the ANN architecture. We choose to restart five times the last loop for each ANN 
architecture, and finally select the model that provides the minimum error, using 
the early stop method. The obtained ANN, with 19 and 14 neurons on its hidden 
layers, is then used to predict the time horizons in all three cases. This architecture 
remains unchanged (as numbers of neurons), but it is successively retrained with a 
one week shifted database. A complete retraining phase lasts about ten to thirty 
minutes, depending on the available computational resources and their 
performance. 
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Fig. 2 – ERR trend (Case I) of test sets for the first training and L = 45 successive retraining phases. 

In Fig. 2 we can see the evolution of the error ERR during L = 45 successive 
retraining phases. One may note that the abscissa represents the numbers of the 
successive retraining phases and the value 0 is associated with the first training. A 
descending trend of ERR could be observed when we successively calculated the 
mean values of the error (see Table I) for the whole interval (of 46 values), then for 
second half, and, finally, for the last quarter of this interval. Here we obtained the 
following values: 1.7061, 1.1456 and 1.0831. The descending trend is quite 
attenuated at the end of the ERR graph.  

Behind each point in the graph from Fig. 2 there is another graph (like in 
Fig. 3), which it is associated with the corresponding forecasting time horizon, in 
which ERR was computed. The quality of the predictions can be analyzed 
graphically, by enforcing a tube around the real outputs, given by a function like 
the following one:  

    qnAnf ⋅+=)( .    (7) 
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Here, A is an acceptable prediction error, q is an increasing factor and n is the 
number of predicted timesteps. The predicted output values should lay in the 
interval output(n) +/– f(n), represented with dotted lines in Fig. 3 that shows the 
graphs of the energy consumption for the test interval of retraining 35. The real 
data are represented with thin lines and the neural network output values with thick 
lines. There is a “tube” (dotted lines) around the real data, given by the function 
f(n) = 200+0.0005·n  (where n = 1 … 168). The abscissa shows the index number 
of the corresponding lines in the database when predictions are performed. 
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Fig. 3 – Data forecasting for the test interval of retraining 35 (Case I). ERR = 1.1396. 

We noticed that, except for a few situations (retrainings:1, 5, 8 and 9), in 
almost all graph representations of the predictions, the trends were well captured, 
even better than in the previous example from Fig. 3 (which was preserved just to 
show the slight differences between the thin and thick lines). 

For the cases II and III it was difficult to find a proper value of the parameter 
Qshake. As an example, when Qshake was set tentatively to 0.001, it resulted to be a 
too high value, since the ERR increased progresively after successive retrainings 
(Fig. 4). In this situation, we were forced to stop the retraining process after only 
11 succesive steps. By decreasing this parameter at progressively smaller values, 
we finaly obtained a good result for Qshake = 10–8. 

Having established a proper value for the shaking parameter, we obtained a 
visible improvement in the Case II for the retrainings 8 and 9, as we can easily 
observe in Fig. 5, where a comparison of ERR graphs was performed between the 
cases I and II.  
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Fig. 4 – ERR trends for Case II when Qshake was inadequately set to 0.001. 
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Fig. 5 – ERR trends for Case I (thin line) and Case II (thick line). 

 
A further, less spectacular, improvement could be noticed in Fig. 6, where 

another comparison of ERR graphs is performed for the cases II and III. 
Supplementary, a more intuitive comparison of these three cases is shown in Table 
I, where the mean values for whole interval, second half, and last quarter of the 
interval (with 46 values) are presented. 
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Fig. 6 – ERR trends for Case II (thick line) and Case III (thin line). 

Table 1 

The mean values of ERR for whole interval, second half, and the last quarter of the interval 

 Case I Case II Case III 
mERR whole interval 1.706176 1.429903 1.426344 
mERR for second half 1.145609 1.144767 1.134491 
mERR for last quarter 1.083165 1.123910 1.075560 

We can easily observe in Table I that even if it is a general improvement of 
the output accuracy for Case II versus Case I, there is still a slighter higher value of 
the mean of the last quarter in Case II. The Case III, which used progressive 
shaking, provided the best results. We have to mention that the parameter Nrep was 
set to 10 in all cases under discussion. 

A comparison with classical approaches, such as the naive or ARMA models 
[15], proved the superiority of the proposed model, since it was the only one able 
to follow so closely the real shape of the power consumption as we can easily 
remark for instance in Fig. 3. Another model proposed in [9] was also far from our 
results. In Fig. 7 we can see a comparison of the adaptive retraining technique with 
shaken initialization (called ARTIS) versus two standard models, which are an 
ADALINE model [16] and a Focused Time-Delay Neural Network (FTDNN) [16].  
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Fig. 7 – Comparison of ERR trends for ARTIS (Case III depicted with thick line) versus ADALINE 

(dashed line) and FTDNN (thin line). 

It is obvious that the retraining technique outperforms the other two models. 

4. CONCLUSIONS 

The outcome of this work confirmed an improvement of the adaptive 
retraining model when a so called "shaken parameter" was taken into 
consideration. We are still looking for a better decreasing trend of the ERR during 
more successive retraining steps. In our previous approaches, by using other data 
sets, we obtained a visible decreasing trend, even if there we didn't employed the 
shaken initialization of the ANN's weights. For the data used in this article, all 
three cases show similar graphs, with the clear difference that the last two cases 
have stabilized much better the evolution of ERR, even after the first six 
retrainings. 

Some similarities with the Simulated Annealing algorithm can be noticed, but 
here the method works in somewhat opposite way, since the shaking parameter 
induces a growing of the disorder among the weights. This parameter must be kept 
at small values in order to avoid the disturbance of the forecasting system. Further 
research is necessary to establish its proper range of values, in accordance with 
each specific set of data.  
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