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SLIDING MOTION CONTROL WITH BOND GRAPH 
MODELING APPLIED ON A ROBOT LEG 
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In this paper we use the bond graph modeling to control a mobile walking robots’ leg. 
The legs’ structure presents two degrees of freedom for an easy understanding of the 
control laws’ behavior. Along with this approach we used the sliding motion control 
method, which is a dynamic position control method, to achieve the reference tracking 
control. Also, a fuzzy control law was added to the main feedback loop, to improve the 
tracking speed and to lower the time needed by the legs’ foot to reach the desired 
reference position. Compared to others, we achieved to eliminate override, a better time 
in reaching the desired position and a lower error rate. 

1. INTRODUCTION 

A functional representation of a system is a representation that describes how 
the system works, or how it should work. This representation can be used in 
simulating and verifying the system, and to generate diagnostics by using many 
simulation environments like Matlab Simulink or bond graph modeling [1, 2]. 

Robots are well-known as nonlinear systems that include a strong coupling 
between their dynamics (Craig, 1996). These characteristics along with structured 
and unstructured uncertainties cause by model imprecision and un-modeled 
dynamics make the motion control a difficult problem (Spong & Vidyasagar, 1989) 
that can be reduced by using the bond graph modeling approach. Modeling a 
system is based on its decomposition. This is why the solution of the majority of 
complex problems consists in modeling. A model simplifies the problem by 
abstracting certain subsets of its observable attributes. Thus, we can emphasis on 
the problems’ relevant points and we can exclude for the respective problem the 
irrelevant ones [3–5].  

A well-known approach, which was made to model the interaction between 
physical systems, is the bond graph method, designed by Henry Paynter in 1959 
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and Damic and Montgomery in 2003 [4]. This method uses the analogy effort-flow 
to describe the physical processes. These processes are graphical represented like 
elementary components with one or multiple ports. These ports represent the places 
where the systems interact with each other [6, 7]. By using this type of modeling 
allowed by the bond graphs, we made a virtual system that is a model of, and 
simulates, a walking robots’ leg with 2 degrees of freedom. This was conducted in 
the bond graph simulation environment 20-Sim. By using this virtual system we 
could test a dynamic control law based on sliding control method [2]. This type of 
simulation represents a new method of approaching the design and control of 
walking robots that are controller through a dynamic control method. The sliding 
motion control (SMC) is used because its dynamic behavior can be modified 
according to specific options [2, 8] and because its closed loop response is 
undisturbed for a certain group of uncertainties (Lin et al., 1998 [9]).  

In this paper, we’ll present a modified dynamic control SMC, developed with 
the help of bond graphs and for which we used a fuzzy control law to amplify the 
command signal for each joint/motor. The purpose of this paper is to improve a 
walking robot movement control on unstructured and bumped surfaces and to 
achieve improved tracking performances of position reference.  

2. THE DYNAMIC CONTROL USING SLIDING CONTROL METHOD 

For the control system used, we have the main dynamic relation below:  

 ( ) ( ) ( ) τ=τ+++ dqGqqqCqqH , , (1) 

where: H is the inertial matrix, the vectors q, q , q  are the position, speed and 
angular acceleration within the robots joints. The matrix C represents the Coriolis 
and centrifugal forces, and G is the gravitational vector. Also, dτ  represents the 
vector of disturbances and the dynamics that are not computed, and τ is the desired 
torque. Knowing that the system error is 

 qqe d −= , (2) 

we chose the sliding surface as given in relation (3) (as shown by S. E. Shafiei in 
[4]). This value of s tends to 0 when the error e also tends to 0, meaning that lim(s) = 0 
when e → 0. 

By using the relation (3) we can rewrite the equation (1) and obtain equation 
(4), by replacing the value of q with the sum q + s, which will have the value of the 
desired value of qd when s equals zero. The value of q becomes qd because we 
need to calculate the torque of a desired angular position. 
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 ( )( ) ( )( ) ( ) τ=τ+++++ dqGsqqqCsqqH , . (4) 

By replacing the terms of equations (3) and (4) we get 

 τ−τ++−= dfCssH . (5) 

Results, that we can compute the torque 

 ( )sKsKf V satˆ ⋅++=τ , (6) 

where 
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Equation (6) presents the force estimation, and s is the exterior PID tracking 
loop, KV, K are positive diagonal matrix and are built so that the stability conditions 
are fulfilled, and f̂  is an estimation of  f. The lambda 1 and 2 matrices were 
adjusted to get the best results. The sat(s) function used is the saturation function, 
in which ϕ is a constant that defines an area around the sliding surface in which the 
control parameter K is lowered proportional to the constant ϕ: 
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 fuzzyKNK ⋅= ,       fuzzyVV KNK ⋅= . (9) 

To calculate the two matrices K and Kv we use a fuzzy control law and two 
constant matrices, N and Nv. To calculate the Kfuzzy gain matrix [7, 11], we need 
two inputs, s and s  for which we have the membership functions in Fig. 1a and 
Fig. 1b. The abbreviation from Fig. 1a and Fig. 1b stands for: N = Negative, 
Z = Zero, P = Positive, V = Very, B = Big, M = Medium, S = Small. The control 
diagram used in the sliding control simulation is the one presented in Fig. 2, in 
which we can observe two main parts: the sliding control area and the internal 
motors control for the two controlled joints. The diagram has three function blocks 
that can be attributed to the sliding control method. The first block is the one that 
computes the value of f̂  from the relation (7). This block uses the values that were 
computed by many blocks: the reference generation blocks for each joint; the error 
computation bock; the function block that computes the dynamic matrix named 
“Calculate H, C, G”.  



 Alexandru I. Gal, Luige Vladareanu, Radu I. Munteanu 4 

 

218 

                             
Fig.1a–Member function for the input s.   Fig.1b–Member function for the input s . 

The second block called sliding surface that forms the sliding motion control 
method is the block that computes the value of s according to relation (3) and it 
contains the PID computation of the error e, relation (2). 

 
Fig. 2 – The control diagram of the dynamic leg control using sliding control. 

Using these control blocks, we have made an internal torque control feedback 
loop and an external joint position feedback loop control, by using a dynamic 
approach along with the sliding control method and the fuzzy adjustment law. 

3. CASE STUDY ACCOMPLISHED BY USING BOND GRAPHS 

Bond graphs are mainly used in modeling different mechatro-
nic/electrical/hydraulically systems because this component part of the system is 
the most difficult to simulate. Thus, we could simulate the behavior of a joint’s 
motor used in Fig. 3 to develop the robot joint system. The control system was 
applied to a walking robot leg that has 2 degrees of freedom with rotating joints. 
This system is presented in Fig. 2 [6, 11]. The kinematic structure from Fig. 4 
corresponds to the equations system in relation (10). 
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Also, we need the numerical values of the physical characteristics of the robot to 
test the control system. 

 

Fig. 3 – Bond graph of the robot joint system. 

Thus, in Table 1, these values are presented and are chosen closer to reality [2]. 

 

Table 1 

Parameter Value Type 
m1 0.04 kg 
m2 0.44 kg 
m3 0.22 kg 
l1 0.1 m 
l2 0.5 m 
l3 0.7 m 
g 9.8 m/s2 

Fig. 4 – The robot leg structure. 
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In order to implement the sliding motion control method we need to define 
the dynamic parameters that are used in relation (7), where H is the inertial matrix, 
C is the matrix of Coriolis effect and centrifugal forces, and G is the matrix of 
gravity tensor: 
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The presented control method uses a fuzzy logic gain to better control the 
approach of the robot foot to the sliding surface. The values of the fuzzy 
membership functions (Figs. 1a and 1b) are presented in Table 2, values which 
were found by trial and error.  

Table 2 
Fuzzy rule for adjusting Kfuzzy 

       s 
 
s  

NB< –3 –3<=NM 
NM<–1.5 

–1.5<=NS
NS<0 Z=0 0<PS 

PS<=1.5 
1.5<PM 
PM<=3 3<PB 

NB< –20 400 400 250 150 50 15 50 
NS= –10 400 250 150 50 15 50 150 

Z=  0 250 150 50 15 50 150 250 
PS= 10 150 50 15 50 150 250 400 
PB> 20 50 15 50 150 250 400 400 

Also, we need to define the constants that were used in the sliding motion 
control combined with the fuzzy logic [10]. Besides the adjustments of parameters 
to achieve a better positioning error, the main variation from the classic SMC is the 
fuzzy control. In order to reduce the positioning error, we added a constraint to the 
sliding parameter s. This constraint removes the integral value from the sliding 
parameter calculation when its value is below a certain threshold. 

By using all of these parameters and functions, we have made an internal 
torque control feedback loop and an external joint position feedback loop control. 
Also, by using a dynamic approach along with the sliding control method and the 
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fuzzy adjustment law, through the bond graph simulation method, we could 
achieve a better control law. 
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4. RESULTS AND CONCLUSIONS 

The control system was made and simulated with the help of the 20-Sim 
modeling environment which has the possibility of using bond graphs. To test the 
control system, we chose 2 sinusoidal signals of 2 and 2.5 radians amplitude.  

    
Fig. 5 – Joint 1: a) error; b) tracking position; 

c) reference position 
Fig. 6 – Joint 2: a) error; b) tracking position; 

c) reference position. 

In Fig. 5 and Fig. 6 we presented the obtained results according to the 
simulation. In these two figures, the bottom diagram represents the angular 
reference for each joint (Fig. 5 and respectively Fig. 6). The middle diagrams 
represent the system tracking signal, and the top diagram has the angular error 
signal for the two joint motors. By watching these diagrams one can observe that 
after 2 seconds and respectively 3 seconds, the reference signals have a sudden 
increase/decrease respectively decrease/increase in value, to test the system 
response to rapid change in the reference signal. 

Compared with the results presented by S.E. Shafiei in [10], we achieved a 
better overall positioning error and a faster positioning when the signal abruptly 
changes. Besides the fact that our control system has better tracking capabilities, 
ours removes the overrides of the system along with a faster time in which the 
system reaches its goal position. Of course that the overrides eliminated are the 
ones that are very large, but the only ones that remain are those due to the system 
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oscillation around its target, as one can see in the Figs. 7 and 8, which shows the 
magnified positioning errors of joint 1 and 2. 

Figures 7 and 8 respectively represent the angular error, which has been 
zoomed in to better observe the error variations. One can observe that in the case of 
joint number 1, the system reaches faster the reference signal, under 0.25 seconds, 
to an angular error lower than +/– 0.002 radians, meaning 0.11 degrees, after which 
the system starts to oscillate around the reference position due to the sinusoidal 
shape of the reference signal. In the case of joint number 2, the system reaches in 
the first 0.75 seconds from the disturbance (the sudden increase/decrease in 
reference value) a +/– 0.005 radians error meaning 0.28 degrees, after which the 
system starts to oscillate around the reference position due to the sinusoidal shape 
of the reference signal. 

 

Fig. 7 – Joint 1 – angular error [rad]. Fig. 8 – Joint 2 – angular error [rad]. 

To be able to analyze the sliding control method, we presented the values of s 
during the simulation. Figures 9 and 10 presents the value of s. Thus, one can 
observe how the sliding control method really works, by noticing how the 
computed value of the PID that returns the s value oscillates for different values of 
the reference signal. One can observe in Figs. 9 and 10 that when the two 
disturbances appear (at second 2 and 3), the value of s has really big amplitude 
peaks (over 30), due to its derivative part which has a punctual high value. As a 
difference between the two signals (joint 1 and joint 2) one can observe that in joint 2, 
the disturbance signal also records a big peak but it maintains a high value (over +/–10 
rad) for another 0.125 seconds, where the signal of joint 1 presents only a peak at 
the moment of the disturbance and after a very short time (under 0.05 seconds) the 
signal lowers in value. 

Because the sliding control is known for having a chattering problem we 
solved the issue by using a saturation function instead of a sign function and it can 
be seen that the output signal does not present this effect. The main observed 
conclusion is that this kind of control is one that tracks very well a uniform 
reference signal where other control methods like the simple PID controllers tend 
to overrides and in some cases to become instable if the PID gains are not correctly 
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chosen. Also, the use of the fuzzy control method to adjust the output gain provides 
a better tracking error than the use of a PID control as shown by Vicente in 2003 
[12, 13]. 

  
Fig. 9  – Joint 1 with value of s. Fig. 10 – Joint 2 with value of s. 

In this paper, we designed the sliding motion control method through 
intelligent approaches that include sliding motion control, fuzzy control and bond 
graph modeling. This method uses the modeling approach of bong graphs used in 
designing and testing mechatronic systems but combined with the dynamic 
properties of the sliding motion control and fuzzy methods. Thereby, we showed a 
new method of robot walking control that improves the real time tracking control 
and we applied it on a two degrees of freedom mobile walking leg control. 
Compared to the conventional sliding motion control method, our system is 4 times 
faster and 10 times more accurate in tracking the position reference and can also 
compensate disturbances that may appear on the sliding surface. Comparing to 
other methods [5, 10], which also uses a fuzzy based controller, our system has a 
better tracking error and much more, it can overcome uncertainties in a much 
shorter time with fewer error oscillations, resulting a robust controller with a 
predictive behavior. 

The main performance demonstrates that using the sliding control method 
and a fuzzy adjustment law to calculate the gain matrix, removes the overrides and 
has better tracking capabilities, behaving like a predictive system, using the 
reference speed and acceleration and also the error speed so the robot can track and 
reach the reference position as smoothly as possible. By modeling the control 
system through bond graphs we could show more clearly the interaction between 
the components of the dynamic control system and also the electric motors, which 
can mimic the behavior of real life systems. Through simulation and modeling, and 
by using bond graphs, this paper develops a new research method that can analyze 
real time control and complex systems, specifically for the intelligent systems of 
which the mobile walking robots are part of. 

The experimental results of the sliding motion control method which was 
used along with a fuzzy adjustment law in order to improve the performance of the 
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robot dynamic control have proved that the studied robot system behaves very well 
when walking on an unstructured and bumped surface, because on encountering a 
sudden change in reference signal, the system is stable and compensates very well 
the disturbance. 

Received on March 13, 2013 
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