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This work relates to the study of direct torque control is applied for salient-pole double star synchronous machine. The machine 
is supplied by two three-level inverters. Two control approaches using fuzzy logic DTC, and neural network DTC are proposed 
and compared. The validity of the proposed controls scheme is verified by simulation tests of a double star synchronous 
machine. The stator flux, torque, and speed are determined and compared in the above techniques. For achieving high 
performances control of the multiphase drive, the proposed controls method needs accurate information about rotor position 
and rotor speed. To this end, they are estimated by using Luenberger observer.

1. INTRODUCTION 

Multiphase machines have been studied for a long time, 
but recently they have gained attention in the research 
community and industry worldwide [1]. Multiphase machines 
are perceived to offer many advantages such as improved 
magneto-motive force waveforms, reduced line voltages 
and increased efficiencies. The consequential benefits of 
these are reduced torque pulsations, lower losses, reduced 
acoustic noise and reduced power ratings of supply 
converters [2, 3].  

Among the multiphase machines, five-phase and six-
phase induction or synchronous machines are the most 
considered in the literature. The present study is focused on 
the double star synchronous machine (DSSM) [4]. Normally 
two two-level inverters are indispensable for double star 
electrical drives. 

Multilevel converters offer an approach to solve these 
problems. In this kind of converters, the output voltage can 
take several discrete levels of equal magnitude. The 
multilevel inverter, first proposed in [5, 6], was aimed to 
reduce the harmonic content of generated voltage and current 
waveforms. If compared with a two-level waveform, the 
harmonic content of such a waveform is greatly reduced. 

The conventional DTC is characterized by its good 
dynamic performances and robustness [6]. One more 
significant disadvantage of conventional DTC is ripples, 
which exists in the torque and flux variables. In the aim to 
improve the performance of the electrical drives based on 
DTC, fuzzy logic direct torque control (FLDTC) and neural 
network direct torque control (DTC-ANN) attracts more 
and more the attention of many scientists [7, 8].  

The elimination of the speed sensor reduces the hardware 
complexity, size and cost, and increases the reliability of 
the drive system. Several speed sensorless control schemes 
have been suggested in literature [9, 10] in order to eliminate 
the speed sensor. In this work a simple approach based on 
extended filter observer is adopted, this observer is known 
by its futures such as order reduction control, and simple 
hard implementation. This paper is devoted to FLDTC and 
DTC-ANN of sensorless DSSM using Luenberger observer 
fed by two three-level neutral-point-clamped (NPC) inverters. 

2. DOUBLE STAR 
SYNCHRONOUS MACHINE MODEL 

The stator voltages equations are given by: 
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with 1 2,s sv v – stator voltages; 1 2,s si i – stator currents; 

21 , ss φφ – stator flux. 
The transformation of the system six phases to the 

system ),( βα  is given by: 

 [ ] [ ][ ]21 ss XXAXX =βα , (2) 

where: Xs1 and Xs2 can represent the stator currents, stator 
flux, and stator voltages.  

The transformation matrix A is given by: 
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To express the stator equations in the same reference 
frame, the following rotation transformation is adopted. 
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3. THREE-LEVEL INVERTER MODELING 

The three-level NPC inverter consists of twelve pairs of 
transistors-diodes and six clamping diodes. The simple 
voltage of each phase is entirely defined by the state of the 
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four transistors constituting each arm. The median diodes of 
each arm permits to have the zero level of the inverter output 
voltage [5]. Only three sequences of operation are retained 
and done in work. Each arm of the inverter is modeled by a 
perfect switch with three positions (0, 1, and 2). 

The space vector diagram of a three-level inverter is 
shown in Fig. 1.  
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Fig. 1 – Space vector diagram of three-level inverter. 

4. FUZZY LOGIC DIRECT TORQUE CONTROL 

The stator flux is estimated from the measure of stator 
current and voltage and their transformation in the α-β 
subspace. The components of stator flux can be estimated by 
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The stator flux amplitude is given by:

 

 2 2ˆ ˆ ˆsφ = φ + φα β . (6) 

The stator flux angle is calculated by: 
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Electromagnetic torque equation is given by: 

 ( )ˆ ˆT̂ p i iem = φ − φα αβ β . (8) 

Figure 2 gives the membership functions for input 

variables TEE ,φ  and sθ̂ . 

The Luenberger observer will be used to estimate the rotor 
position and rotor speed of DSSM. The Luenberger observer is 
based on the error of the actual position and actual speed and 
their estimated values which must be converged toward zero.  
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Fig. 2 – Membership functions of input variables: 
a) flux error; b) torque error; c) stator flux angle. 

The Luenberger observer is given by the following 
system:
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l1, l2, l3 are the observer gains, TL is the load torque, if is the 
current of rotor excitation. 

This observer can be established from the DSSM model 
as follows: 

 ( ) ( ) ( )
( )

ˆd ˆ
d

ˆd 1 ˆˆ ˆˆ ˆ
1 2d

ˆd ˆ .3d

p
t

fT T l lem Lt J J
TL l
t

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪⎩

θ = Ω

Ω = − − Ω+ Ω−Ω + θ−θ

= θ−θ

 (10) 

The switching tables of the proposed three-level FLDTC 
are used to select the best output voltage depending on the 
position of the stator flux and desired action on the torque 
and stator flux. 

The structure of DTC based on fuzzy logic control of 
sensorless DSSM is shown in Fig. 3. 
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Table 1 
Rules of fuzzy control for first star 

 

Table 2 
Rules of fuzzy control for first star 

1Star  12ŝθ  1ŝθ  2ŝθ  3ŝθ  4ŝθ  5ŝθ  6ŝθ  7ŝθ  8ŝθ  9ŝθ  10ŝθ  11ŝθ  

2Star  1ŝθ  2ŝθ  3ŝθ  4ŝθ  5ŝθ  6ŝθ  7ŝθ  8ŝθ  9ŝθ  10ŝθ  11ŝθ  12ŝθ  

 
 

Fig. 3 – Three-level FLDTC scheme for sensorless DSSM (with i = 1, 2, 3 or 4). 
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5. NEURAL NETWORK 

DIRECT TORQUE CONTROL 
The structure of the neural network to perform the DTC 

applied to DSSM satisfactorily was a neural network with 3 
linear input nodes, 12 neurons in the hidden layer (H1…, H12), 
and 6 neurons in the output layer [8], as shown in Fig. 4. 
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Fig. 5 – Dynamic responses of 3-level FLDTC 
for sensorless DSSM. 

6. SIMULATION RESULTS 

The observer gains [l1, l2, l3] are chosen as follows: 
[100 000, 100, 1] to satisfy convergence conditions.  

The DSSM is accelerating from standstill to reference 
speed 100 rad/s. The system is started with full load torque 
(TL = = 11 N.m). Afterwards, a step variation on the load 
torque (TL = 0 N.m) is applied at time t = 1 s. And then a 
sudden reversion in the speed command from 100 rad/s 
to –100 rad/s was introduced at 1.5 s.  

Indeed, Figs. 5 and 6 show the simulation results 
obtained for the three-level FLDTC and the three-level 
DTC-ANN of sensorless DSSM respectively. Note that the 
speed follows its reference value while the electromagnetic 
torque reaches slowly its reference value. Elimination of the 
load torque causes a slight variation in speed response. The 
speed controller intervenes to face this variation and ensures 
the system follows its suitable reference speed. Moreover, 
the decoupling control between torque and stator flux is 
always confirmed. 
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Fig. 4 – Neural network structure for three-level direct torque control. 
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Fig. 6 – Dynamic responses of 3-level DTC-ANN for sensorless 

DSSM. 

It can be observed also that the estimated speed can track 
the actual speed accurately with minor error. However, the 
DTC-ANN for sensorless DSSM decreases considerably 
the flux ripple in comparison with basic FLDTC. 

7. CONCLUSION 
The objective of this work was, at first, to realize an 

intelligent control system based on DTC applied to a 
sensorless DSSM fed by two three-level inverters. In the 
second place, improving dynamic performance; by 
introducing fuzzy and neural network strategies.  

In this paper, one describes mainly the implementation of 
a law of robust control by presenting a neural network, and 
fuzzy logic DTC approaches. The simulation results verify 
that the proposed DTC-ANN scheme achieves a fast torque 
response and low flux ripple, in comparison to the FLDTC 
scheme. The decoupling between the flux and the torque is 
maintained, which confirms the good performances of the 
developed drive systems. In addition, the simulation results 
have shown that the proposed sensorless multiphase drive 
has a satisfactory dynamic response over a wide speed 
range. 

APPENDIX 

Table 3 

Double star synchronous machine parameters 

5 kW, 2 poles, 232 V, 50 Hz 
Components Rating values 

Stator resistance             ( Rs ) 2.35 Ω 
Rotor resistance             ( Rf ) 30.3 Ω 
d-axis stator inductance ( Ld ) 0.3811 H 
q-axis stator inductance ( Lq ) 0.211 H 
Rotor inductance           ( Lf ) 15 H 
Mutual inductance        ( Mfd ) 2.146 H 
Moment of inertia          ( J ) 0.05 Nms2/rad 
Friction coefficient         ( f ) 0.001 Nms/rad 
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