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An efficient analysis of circuits with nonlinear resistive elements can be performed 
using the equivalent sources method. The nonlinear resistors are replaced by sources 
which are iteratively corrected based on their terminal voltages or currents. The internal 
resistances of the sources remain unchanged during the iterative process and their 
values can be chosen so that the iterative procedure convergence is always ensured. The 
equivalent circuit remains unchanged and only the sources values are iteratively 
corrected. That allows the development of a fast procedure for circuit analysis which 
computes on each harmonic the transfer immitance matrix between the controlled 
sources and their control variables. The computation time is further decreased by 
iteratively selecting a specific number of harmonics in terms of their weight. 

1. INTRODUCTION 

The most often technique used to obtain the steady state solution of nonlinear 
circuits is time domain analysis, which evaluates the asymptotic evolution 
characterized by a sufficiently small variation of the state variables. The 
nonlinearity treatment can be performed using the Newton-Raphson method [1] or 
the equivalent source method [2, 3]. If the independent sources have a broad range 
of frequencies then the time step is taken to be smaller than the smallest period. 
That leads to a huge computation time. Shooting algorithms are used in order to 
accelerate the computation [1, 4]. Introducing more variables of time ( tt kk ω= ) 
has not yet produced convincing results [5]. Using the harmonic balance method is 
an option, but the system of equations can be very large in the case of signals with 
high content of harmonic components. The Newton-Raphson procedure does not 
always ensure the convergence of the iterative process. An equivalent sources 
method based method is proposed in [6]. The nonlinear resistors are replaced by 
sources iteratively corrected in terms of their terminal voltages or currents. It can 
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be shown that the internal resistances of the equivalent sources can be chosen so 
that the iterative technique to be convergent. This procedure has some major 
advantages, namely:  the convergence is always ensured, the rate of convergence 
can be speed up by using an overrelaxation technique, the error to the exact 
solution can be precisely evaluated, the linear circuit computation for each iteration 
can be performed only once, independently, for each harmonic component, the 
summation of harmonics being performed at each iteration for the equivalent 
source values correction, the circuit remaining unchanged. 

In this paper the computation technique presented in [6] is developed in order 
to accelerate the computations at each iteration, using the above mentioned 
advantages. 

2. EQUIVALENT SOURCES METHOD 

For the sake of simplicity, we assume that a nonlinear resistor is voltage 
controlled and has the constitutive relationship )(uFi = . This relationship is 
replaced on each resistor port with a voltage source having the characteristic  

 kkkk siru += , (1) 

where the source ks  nonlinearly depends on the port voltage 

 )()( uGuFrus kkkkk ≡−= . (2) 

If the function pp RRF →:  is Lipschitzian  

 ( ) ( )  "'"' pp RR uuuFuF −Λ≤− , pRuu ∈∀ ",'  (3) 

and monotonic 

  2"'"',)"()'( pp RR uuuuuFuF −λ≥−− , pRuu ∈∀ ",' , (4) 

with 0>λ , then one can choose  kr   so that the function G , with the components 

kG , to be a contraction 

 pp RR uuuGuG "')"()'( −θ≤− , (5) 

with 1<θ  [2].  The inner product is defined as yrxyx pR
T, = , where p  denotes 

the number of nonlinear resistor ports and r is the diagonal matrix of the 
resistances kr . 

The iterative method of equivalent sources consists in the following steps: 
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a) at the first iteration the sources are initialized with arbitrary values )0(e ; 
b) at each (n) iteration, a linear steady state circuit is solved  

 0
)1()( )( usLu nn += − , (6) 

where 0u  is the voltage vector at nonlinear resistor ports corresponding to the 
independent sources; 

c) the equivalent sources values are corrected using: )( )()( nn uGe = ; 

d) when the error ( )∫ ∑
=

−− −=−
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small, the iterations repeated from b) are stopped. 
It can be shown that the linear function L  which corresponds to the solution 

of the linear circuit is nonexpansive  

        "')"()'("' sssLsLuu −≤−=− . (7) 

Therefore the above described iterative procedure 
)()()1( nGmLn sus →→−  is convergent. 

3. CIRCUIT STEADY STATE HARMONIC ANALYSIS 

The time periodic sources are expanded into Fourier series, adopting the 
approximate values given by 

 ( )∑
Φ∈

ω+ω+=
l

l
m

mkmkkka tmstmssts )cos()"()sin()'(2)()( 0 , (8) 

where lΦ   is a set of harmonics orders having weights higher than a lower limit 

lχ . The limit weight lχ  is chosen such that the set to contain fewer harmonics 
than an imposed value lµ . The approximation )(sYs

la = , introduced by the 

limitation of sources values to a finite number of harmonics, accelerates the 
convergence of the iterative procedure as 
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and, therefore, emphasizes the contraction of the approximate iterative procedure 



336 Florea Ioan Hănţilă et al. 4 
 

 

 )()()1()1( nGnLn
a

Yn suss
l

→→→ −− . (10) 

This property can be exploited starting with a small number of harmonics 1µ , 
then raising it up to a value which, obviously, can be less than the total spectrum of 
harmonics. 

4. LINEAR CIRCUIT SOLUTION 

In order to solve the linear circuit corresponding to each harmonic a phasor 
representation is used. Both DC and harmonic solutions are obtained using the 
modified nodal method. We have 

 )"j'()"j')(j( mmmmm BBXXQP +=+ω+ , (11) 

where mm ⋅ω=ω , P is the nodes conductances matrix, bordered with values +1 
and –1 associated whit the nodes that surrounds the inductances or ideal voltage 
sources, Q is the capacitances, the self and mutual inductances matrix, 

"j' mmm XXX +=  is the unknown vector, formed by nodes potentials, inductances 
and ideal voltage sources currents and "j' mmm BBB +=  is the vector of short circuit 
currents of nodes, bordered with the values of ideal voltage sources. 
From equation (11) the following system results 

 '"' mmmm BQXPX =ω− , (12′) 

 "'" mmmm BQXPX =ω− , (12″) 

which can be written in the form 

 "'')( 111112
mmmmm BQPPBPXQQPPI −−−−− ω+=ω+ , (13′) 

 '"")( 111112
mmmmm BQPPBPXQQPPI −−−−− ω−=ω+ , (13″) 

where the matrices 1−= PM , 11 −−= QPPN  and QQPPZ 11 −−=  are evaluated 
only once, before starting the iterative process. Only for the selected harmonics 
components we determine the nodes potentials that surrounds the ports of the 
nonlinear resistors and then the immitance matrix "j' mmm WWW += . We have 

 '""''' 0mmmmmm usWsWu +−= , (14′) 

 "'""'" 0mmmmmm usWsWu ++= . (14″) 
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The immitance matrix is evaluated only once for each set of selected harmonics 
and are used for all iterations. The computation procedure consists of the following 
steps: 

1. The data are introduced (e.g.: defining elements and nodes that surround 
them). 

2. The matrices P and Q are numerically evaluated and stored. 
3. The matrices M, N and Z are numerically evaluated and stored. 
4. We adopt an imposed number of total harmonics that will be taken into 

account ( Tµ ) and a time step, smaller than the period of the greater harmonic.  
5. The harmonic analysis of the independent sources is performed, retaining 

all the resulted harmonics. 
6. The ports voltages 0u  (see equation (6)) are determined choosing a zero 

value for the equivalent sources. 
7. The equivalent sources are corrected using (2), and the initial value )0(s  is 

obtained. 
8. The harmonic analysis of equivalent sources is performed, retaining a 

small number 1µ  of the harmonics which have the greater weight. For these 
harmonics the immitance matrix mW  is evaluated. 

9. The iterations presented in relation (10) are made. Each harmonic 
component of the ports voltages is computed using (14), plus the corresponding 
harmonics of 0u . To correct the equivalent sources, ports voltages are determined 
in the time using (8), summing only harmonics from the set lΦ . The harmonic 
analysis of equivalent sources is also done according to (8). Finally, we obtain the 
values of the equivalent sources with a convenient error. 

10. Return to step 8, adopting a larger number of harmonics, having the 
greater weight. 

11. The computation process is stopped at a convenient number of harmonics, 
much smaller than lµ . 

The Fourier decomposition of the selected harmonics is made using special 
techniques which severely reduce the computation time. 

5. ILLUSTRATIVE EXAMPLE 

We consider the circuit in Fig. 1, with Ω= k1cr , Ω=11r , F1µ=C , 
mH1.0=L , V)2sin()2sin(10)( 21 tftfte ππ= , kHz11 =f , MHz12 =f  and the 

diode u-i relationship given in Fig. 2. 
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Fig. 1 – Nonlinear circuit. Fig. 2 – Diode u-i relationship. 

The nonlinear element is replaced by a 10 Ω resistor in series with a voltage 
source, whose dependence on the diode branch voltage u is  
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(16) 

where rg /1= . The total number of harmonics taken into consideration is 

Tµ = 8 000, and the number of equal time steps over a period 48 000. Three sets of 
harmonics with the most important weights are used. For each set the maximum 
number of harmonics (Table 1) is imposed. The weights are reported to the 
maximum value of the independent source VE 10max = . The imposed maximum 

error for stopping the iterations, reported to maxE  is 410− . 
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Table 1 

Different imposed number of harmonics  
and details of the obtained results 

Selection 
Imposed number 
of harmonics lµ  

Obtained number 
of harmonics lΦ  Lower weight lχ  Number of 

iterations 
1 10 6 5.000 x 10-4 344 
2 50 47 4.500 x 10-4 1 292 
3 100 65 4.050 x 10-4 1 964 
4 200 73 3.645 x 10-4 886 

The capacitor voltage is presented in Fig. 3. In Fig. 4 the result obtained with 
a SPICE software for the same voltage and using the same imposed maximum 
error is shown. 
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(a) (b) 

Fig. 3 – Capacitor voltage in the steady state, computed using the proposed method:  
a) over the period 11 /1 fT = ; b) detail for [0.67, 0.677] mst∈ ..  
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(a) (b) 

Fig. 4 – Capacitor voltage in the steady state, computed using SPICE: a) over the period 11 /1 fT = ; 

b) Detail for [40.26, 40.269] mst∈ . 
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6. CONCLUSIONS 

This paper presents an efficient procedure for harmonic analysis of nonlinear 
circuits with resistive elements in steady state regime. This method allows the 
separation of the harmonics for solving the circuit at each iteration. Hence an 
important advantage results: transfer immitances between the control variables and 
the nonlinearly controlled sources are easily obtained based on three matrices 
which are determined only once, at the first iteration. The proposed procedure is 
recommended in cases when the circuit independent sources have very different 
frequencies. In these cases, the time domain analysis requires going through a large 
number of steps to achieve the asymptotic solution. The selection of harmonics 
with the largest weights permits the usage of a much smaller number of harmonics 
than the full spectrum and greatly reduces the computation effort. In the proposed 
illustrative example, although the number of harmonics in the spectrum is 8000, 73 
harmonics were sufficient to obtain a good result. 
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