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In this paper, a new decentralized fuzzy sliding mode control (DFSMC) strategy for a class of large-scale nonlinear systems 
(LSNS) with strong unknown interconnections is proposed. The main objective of our contribution is to reduce the used 
switching gains in the decentralized sliding mode controller (DSMC) to decrease the chattering amplitude in the presence of 
strong interconnections in each sub-system. To achieve this objective, the global system is decomposed into sub-systems, then, 
two fuzzy logic approximations are constructed, the first one is used to approximate the unknown interconnections terms in 
order to provide a better system modelling, and the second is used to generate the discontinuous part of the control law in the 
(DSMC). Finally, a Quadrotor attitude angles example is presented to show the effectiveness of the proposed control strategy. 
 

1. INTRODUCTION 

In the centralized control theory, it is well-known that the 
controlled system is driven by a single controller that has 
all the available information about the system, with the 
technologies development, most of the industrial systems 
become complex, that is they lead to many difficulties con-
cerning the tasks of analyzing, designing, and implementation 
of control strategies due to the well-known reasons [1]: 
dimensionality, information structure constraints, uncertainty, 
and delays. 

Many methods are proposed to prove the global stability 
of the whole system like the absolute stability [2], relative 
stability [3] and a construction of Lyapunov function for 
large scale systems is proposed by [4]. 

In the last few decades, there have been large interesting 
works addressed to the development of large scale systems 
theory [5–8], the main treated problem in this theory is how 
to decompose a given control problem to smaller sub-problems 
weakly interconnected one to each other that can be treated 
separately; as a result, the global system is not any more 
controlled by a one centralized controller but by many separated 
controllers represent together a decentralized controller. 

Earlier versions of the sliding mode control methods [9–12] 
were focused on multi-inputs multi-outputs (MIMO) and 
large-scale systems control where all information about the 
system are available.  

Decentralized sliding mode control has been developed 
by many works [12–15], even so, strict conditions are imposed 
on sub-systems with some assumptions on the interconnections 
(as the linearity assumptions, assumed bounded…), but in facts, 
most of the physical systems are natively nonlinear and some 
information about the system are not always available. 

On the other hand, the used switching gain values in the 
DSMC depend on the bounds of uncertainties and 
interconnections in the system thus, systems with large 
uncertainties and interconnections bounds need higher switching 
gain and that produce a higher chattering  amplitude in control 
signals, the boundary layer (BL)Approach is proposed in 
[16, 17] to reduce the chattering amplitude by replacing the 
discontinuous function sign by a continuous one but this 
solution can drive the system states only to the boundary 

layer but not to the sliding surface, as consequences, system 
with large uncertainties and interconnections need a larger 
boundary layer bound size due to large interconnections, 
and if we continue increasing the boundary layer thickness, 
we are pushing the control system to a system with no 
sliding mode.     

In [18], a neural network is used to predict the inter-
connections among sub-systems to solve this problem the 
sub-systems outputs have driven with success to a desired 
trajectory but the proposed adaptation mechanism is so slow to 
adapt the control law with the new conditions (new set point, 
uncertainty…) and this is not tolerated in too many applications. 

In this work, a new control design based on the combination 
of the sliding mode with the fuzzy logic to control a class of 
nonlinear interconnected systems with strong interconnections 
is proposed, the designed control law is divided into two 
parts: the equivalent and the robust (discontinuous) one [17]; 
the fuzzy  identification capability is used to approximate the 
unknown interconnection in each sub-system; thus the robust 
part is responsible to compensate only the system uncertainties 
and the fuzzy approximation error which means a lower 
switching gains to be used, then the robust part of the DSMC 
is generated  by a fuzzy logic controller in order to eliminate 
the chattering phenomena. 

This paper is organized in five sections starting with an 
introduction, in section two, the problem of a class of large 
scale nonlinear systems is formulated, the proposed DFSMC 
design methods are developed in section three, in section four, 
the simulation results show the effectiveness of the proposed 
control design and, finally, a conclusion is presented in the last 
section. 

2. PROBLEM FORMULATION 

Let us consider the large-scale nonlinear system composed 
of N interconnected sub-systems, each sub-system Si is 
described as: 
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where [ ]T21  ., . . , , idiii xxxx = is the state vector, ui ℜ∈  is 
the control signal input and yi ℜ∈  is the output of the sub-
system Si.  

It is assumed that the nominal part )( iiN xf of the 
nonlinear function ( ) )()( iiiNi xfxfxf Δ+=  is known and 
the interconnections ∆i(x) ℜ∈ , among sub-systems (i = 1, 
2, . . ., N) are not available, these interconnections are 
considered as weak interconnections if they could be taken 
as system disturbances in each sub-system in the controller 
synthesis; and they considered as strong if they are large 
enough to impact the control and stabilization of each sub-
system.  

To this end, we consider the following assumption: 
Assumption 1. For the sub-system described in (1) the 

unknown part ∆f (xi) of the nonlinear function ( )ixf  is 
bounded by a positive value, that: 

( )  i i imf x FΔ ≤ . (2)

Assumption 2. For the sub-system described by (1) the 
unknown interconnections ∆i(x) are bounded by a positive 
value, that: 

( )i imx IΔ ≤ . (3)

Assume that the given reference yir is bounded and has 
up to di −1 bounded derivatives. The desired output vector 
is:                T)1( ] ,...,, ,  [ −= d

iririririr yyyyY . 
The tracking error of the ith sub-system is defined as: 

  irii yye −= . (4.a)

Then the error vector of the ith sub-system is given by: 

T)1( ] ..., , ,[ −= id
iiii eeee . (4.b)

Our objective is to design a decentralized fuzzy sliding 
mode controller for each sub-system which will drive the 
output yi to track a desired output trajectory yir (i.e: ei → 0) 
in the presence of strong unknown interconnections and 
uncertainties using only a local measurements. 

The sliding variable for the ith sub-system is defined as 
[19]: 
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with 10 =λi  and the selection of ijλ must satisfy the 
following Hurwitz polynomial [19]:  
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3. CONTROL DESIGN 

It is assumed that the interconnections are unknown and 
the proposed control design must compensate them and 
drive the system outputs to a desired trajectory; to achieve 
that, a fuzzy approximation is used to approximate the 
interconnections )( ii xΔ  in each sub-system. 

The sliding variable derivative is: 
1
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To ensure the existence of the sliding mode and its 
reachability occurrence in finite time, the control laws ui   
must satisfy the η  reachability condition given by [17]: 

 iii SSS η−< , (8)

with η  is a small positive constant.– 
The decentralized sliding mode control law that satisfies 

(8) can be given by: 
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where: 1 if 0sign(S ) 1  if 0
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and the positive switching gain ki must be chosen large 
enough to compensate the uncertainties and the 
interconnections terms, so ki must satisfy the following:  

  η++≥ imimi IFk . (11)

In this case, when the uncertainties and the 
interconnection terms are large, ki become large and 
produce a higher chattering amplitude, the standard sliding 
mode with boundary layer can solve only the problem of 
system with small uncertainties and interconnections 
because the thickness of the boundary layer is proportional 
to the chattering amplitude and if we continue increasing 
the boundary layer thickness, we actually drive the system 
states to a system with no sliding mode. 

For the system with large uncertainties and 
interconnections, this control design is proposed, a fuzzy 
logic is used to approximate the interconnections ( )i ixΔ  
using only local information and a fuzzy logic controller is 
used to approximate the sign function by a smoothing way 
in order to reduce the switching frequency. 

Let us denote the fuzzy approximation error by:  

ˆ( ) ( ) ( )       ( ) ,withi i i i i i i i i mx x x xΔ Δ Δε = Δ − Δ ε < ε , (12)

where miΔε is the upper bound of the fuzzy approximation 

error and )(ˆ
ii xΔ is the approximated interconnection for 

the ith sub-system. 

3.1. FUZZY SYSTEMS 

The interconnections ˆ ( )i ixΔ among the sub-systems are 
considered as a MISO Takagi-Sugeno fuzzy system 
mapping an input vector [ ] n

N Uzzz ℜ∈∈= T
21 z,..., to a 

scalar output ℜ∈fy  with  ...321 nUUUUU ×××= , 
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ℜ∈iU and  this fuzzy system is builded from a set of IF-
THEN rules of the form:  

1 1:  z   A  and ...  is  THEN y ,k k k k
n n f fR IF is z A y=  (13)

where k = 1, 2…, p is the rule number, k
iA  are the fuzzy set 

defined on iU and k
fy  are constants. 

Let )( i
k
A z

i
μ  be the membership function associated to 

fuzzy set k
iA , the choice of this membership function is 

based on C-means clustering algorithm of an experimental 
input/output data vectors; as result of this algorithm, a 
Gaussian membership function is constructed. 

The output is given by [20]: 
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The output can be rewritten as:  
T( ) ( ) ,fy z w z= θ , (16)

where [ ]T21 ..., p
fff yyy=θ is the vector of fuzzy system 

parameters, and ( ) [ ]T21 (z)(z)...,(z), pwwwzw =  is a basis 
function defined as [20]:  

1

( ) ( ) / ( )
p

k k i
i

w z z z
=

= μ μ∑ . (17)

In sliding mode control, the control signal is divided into 
two components: equivalent uie and robust iruΔ  

Δ+= iriei uuu . (18)

In this paper, the robust component of the controls laws 
is generated by a Takagi-Sugeno fuzzy logic controller 
(FLC) [21] with the surface Si as an input and the robust 
part of the control signal iruΔ  as an output [22] as shown 
in Fig. 1. For each ith controller, the membership functions 
of the two variables Si and iruΔ  are illustrated in Fig. 2. 

 
Fig. 1 – Fuzzy sliding mode structure of the ith controller. 

Fig. 2 – Membership functions of Si and irûΔ , 

where irûΔ is the FLC output. 

The rules of the fuzzy controller are given by: 
R1: If s is NB  THEN  u is PB  
R2: If s is N  THEN  u is P 
R3: If s is Z  THEN  u is Z  
R4: If s is P  THEN  u is N  
R5: if s is PB  THEN  u is NB. 
Those rules are chosen such that the fuzzy controller has 

the same behavior as the sign function to generate the 
robust part smoothly.  

Our objective is to minimize the switching gains ki in 
each controller that guarantee the compensation of the 
uncertainties and the strong interconnections. 

THEOREM 1. Consider the large-scale nonlinear 
system composed of N interconnected sub-systems, each of 
sub-systems Si is described in (1). 

In the presence of the uncertainties and strong unknown 
interconnections, the decentralized control law given by: 
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where 

 ,i im i mk F Δ≥ + ε + η  (20) 
can guarantee that the tracking error converges to zero in 
finite time. 

Proof. Consider the candidate Lyapunov function:  
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By replacing iu with equation (19) we have: 
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[ ]iriiiiiiiii ukfS)(SV ˆ)(xˆ)(x Δ−Δ−Δ+Δ= . (24)
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By using the inequalities (2) and (12) we obtained: 

ˆi i i im i m i irV (S ) S F k uΔ< + ε − Δ⎡ ⎤⎣ ⎦  

[ ]irimiimiii ukFS)(SV ˆΔ−ε+< Δ  . (25)

We have 1ˆ1 +≤Δ≤− iru that means 1ˆ ≤Δ iru  thus: 

[ ]imiimiii kFS)(SV −ε+< Δ . (26)

  By comparing the inequality (26) with the η -
reachability condition given in (8) the gain ik  must satisfy 
the following: 

η+ε+≥ Δmiimi Fk . (27)

The switching gain ik  must compensate the uncertainties 

ifΔ  and the interconnections approximation error miΔε . 
Therefore, by applying (27), the convergence of the 
tracking error to zero in finite time is guaranteed. 

4. SIMULATION RESULTS 

To show the effectiveness of the proposed control design 
a quadrotor attitude angles is considered, this system is 
composed of three strongly interconnected angles [23] as 
shown in Fig 3. 

z  

F4 F1 

F3 F2 

  

  

 
  

x  

y  

w1  rotor1  W2  rotor2  

w3  rotor3  w4  rotor4  

Fig. 3 – Quadrotor helicopter. 

The equations that describe the motion of the Quadrotor 
attitude after the system decomposition are given by [24]: 
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where the system outputs y1 = x11 = φ, y2 = x21 = θ and 
y3 = x31 = φ are the roll, the pitch and the yaw angles 
respectively. uij are the control signals. Jx, Jy, Jz and Jr are 
the system inertia parameters, and 4321 wwww −+−=Ω   
where iw is the angular speed of the ith rotor (i=1–4). 

The underlined parts in (28) represent the interconnections 
Δi(x) between the sub-systems, these interconnections 
represent external information in each sub-system and supposed 
to be unknown in the control design synthesis and a fuzzy 
approximator is used to predict them. 

The simulation results are obtained by using 
MATLAB\SIMULINK 7, the initial values of the system 
states are given by:  

(x11, x12, x21, x31, x32)T = (0.5, 0, 0.5, 0, 1, 0) 

The model parameter values of the Quadrotor system are 
adopted from [24] and listed in Table1. 

Table 1 

Quadrotor parameters 

Parameter Description Value Units 
g Gravity 9.81 m/s2 
m Mass 0.5 kg 
l Distance 0.2 m 

Jx Roll inertia 4.85×10–3 kg·m2 
Jy Pitch inertia 4.85×10–3 kg·m2 
Jz Yaw inertia 8.81×10–3 kg·m2 

Kax=Kay Aerodynamic factors 
(X, Y) 

5.5670×10–4 / 

Kaz Aerodynamic factor (Z) 6.3540×10–4 / 
Jr Rotor inertia 2.8385×10−5 kg·m2 

Figure 4 shows the simulation results of the proposed 
control design. The desired positions are x11, x21, x31 = (0; 0; 
0), it clearly observed in Figs. 4a–c, that the proposed 
DFSMC can drive the system outputs x11, x21, x31 to the 
desired position in finite time. 

The used switching gains in each controller u11, u21, u31 
are k1, k2, k3 = (1; 1.1; 1.19) respectively; on the other hand, 
to achieve the same performances in the classical sliding 
mode control the switching gains must be increased to k1, 
k2, k3 = (12; 11.7; 13.1). 
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Fig. 4 – Simulation results (first test): a) x11; b) x21; c) x31; d) u11; 
e) u21; f) u31. 

Figures 4d–f show the control signal for each 
sub-system. Those figures show that the proposed control 
design has no chattering in the control signals Uij. 

In order to show the effectiveness of the proposed control 
design, we try to stabilize the roll angle (x11)d = (0) in the 
presence of large variation (i.e. large interconnections) in 
the two others sub-systems with the trajectory (x21, 
x31)d = (sin(2.07t)), 3sin(0.75t)), the simulations results are 
shown in Fig. 5. 

 

 

Fig. 5 – Simulation results (second test) a) x11; b) x21; c) x31; 
d) u11; e) u21; f) u31. 

Figure 5 show that the proposed DFSMC design achieves 
good performances in the presence of large variations in x21, 
x31 by using the same switching gains shown above, in the 
other part, as can be seen from the simulation results of 
Fig. 5a, the standard decentralized sliding mode control (the 
dotted line in Fig. 5a) failed to control the system in the 
presence of these large variations. 

Figures 5d–f show the control signals for each sub-
system, those figures show that the proposed control design 
has no chattering in the control signals Uij. 
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5. CONCLUSION 

In this paper, a decentralized fuzzy sliding mode control 
for a class of large-scale nonlinear interconnected systems 
with strong interconnections is presented. The designed 
method is a combination of sliding mode control with a fuzzy 
logic. The latter is employed to approximate the unknown 
interconnection terms, and to provide a lower switching 
gain despite the existence of uncertainties and interconnections. 
As a result, the convergence of the tracking errors to zero in 
finite times is obtained without chattering behavior in the 
control signals. The simulation results prove that the proposed 
DFSMC can achieve good performances compared to the 
classical sliding mode control. Another advantage of the 
proposed design is that the used switching gains are reduced 
without losing the desired systems performances. 

Received on February 5, 2016  
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