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Eddy-currents generate heat sources in the melted volume of a ferromagnetic material 
placed in a moving crucible. The solidification is produced by applying a cooling 
system on the crucible boundary. The liquid-solid transition surface evolution and its 
shape define the quality of the crystallization microstructure obtained in the casting 
process. The computation of the nonlinear eddy current problem coupled with that of 
thermal diffusion field for the moving ferromagnetic pieces is required in order to 
obtain the temperature field distribution and the liquid-solid transition surface location 
at each time step. This paper presents an efficient procedure for solving this coupled 
field problem and obtaining the time evolution of the melted piece speed, such that the 
solidification surface shape preserves the imposed parameters. 

1. INTRODUCTION 

When metallic pieces are obtained using a casting process, the “free” 
solidification starts often form centres with impurities and advances in an 
arborescent manner, resulting a non-uniform microstructure and micro-cracks that 
prejudice the mechanical properties. To achieve a uniform microstructure it is 
necessary to impose a controlled solidification of the melted conducting material 
during the casting process in a controlled thermal environment, defined by a phase 
change surface which gradually evolves in time. 

Eddy-current heating is the most efficient way to locally heat the piece, by 
which one can realize the volume distribution of losses inside the piece. The 
cooling system acts on one side of the melted shape in which the melted metal can 
be found. The solidification is controlled by moving both the eddy-current 
producing system and the cooling system. 
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The temperature field computation and, therefore, the solidification surface 
computation, is a very complicated problem, involving the necessity of eddy 
current problem computation, coupled with thermal field problem, when the piece 
is moving. The temperature strongly modifies the material parameters, which are 
required for the electromagnetic field computation. For the solidifying 
ferromagnetic pieces, small changes of the temperature below Curie point lead to a 
dramatic change of the B-H relationship, which becomes strongly nonlinear. The 
changes near the liquid-solid transition surface necessitate taking into account the 
solidification latent heat. 

The electromagnetic field regime is periodic, the piece moving speed being 
much smaller than the field variation speed. The nonlinearity of the B-H 
relationship is treated, most frequently, by using the static permeability method, 
iteratively corrected by different procedures [1]. The big advantage of this 
procedure consists in the possibility to use the phasor representation of the 
electromagnetic field quantities. This is why this method is frequently adopted by 
the most well-known commercial programs (FLUX, VECTOR FIELDS etc). 
Unfortunately, the static permeability method is not always convergent and the 
computed solution can be very different compared to the real one in the case of 
strong nonlinearities. The analysis in time domain leads to a convenient solution, 
but the computation time needed to evaluate the asymptotic evolution in order to 
determine the permanent regime solution can be huge. The harmonic balance 
method [2] assumes the representation of the electromagnetic field quantities using 
a finite number of harmonics that are introduced, in this form, in the field 
equations. The coupling between harmonics, given by the nonlinear relation B-H, 
leads to a huge nonlinear system. Moreover, the Newton-Raphson iterative 
technique used to treat the nonlinearities is not always convergent. Recently in [3], 
there has been proposed a very efficient computation method for electromagnetic 
field periodic regime in nonlinear media. Based on fixed point polarization method 
[4, 5], this method allows the de-coupling of the harmonics and the eddy current 
problem is solved using a phasor representation for each harmonic. The 
convergence is always ensured for any choice for the retained number of the 
harmonics in the Fourier decomposition. One can start the computation only for the 
fundamental, having all the advantages given by the static permeability method, 
and then by increasing the number of the harmonics taken into account we obtain a 
higher accuracy of the result. The convergence speed can be increased in a 
spectacular manner by using and over-relaxation method described in [6]. 

The space numerical discretization is frequently done using the finite element 
method. In the case of a relative movement between bodies, the discretization mesh 
is rebuild for each time step, being necessary reallocation procedures for the 
material parameters and the system equation matrices need to be recomputed. More 
appropriate are the integral methods [3, 7, 8] or finite element-boundary element 
hybrid methods [9, 10, 11]. The use of eddy current integral equation is very 
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efficient for ferromagnetic bodies heating problems computation, for which the B-
H relationship is strongly dependent on temperature [12]. 

The solidification of moving ferromagnetic pieces, under the action of eddy 
current has been studied in [13], being determined the evolution of the 
solidification surface, under the known moving speed. This paper presents the 
computation procedure of a more important problem from the technological point 
of view: the determination of the piece’s moving speed, such that the shape of the 
solidification surface to preserve some imposed parameters. 

2. EDDY CURRENT PROBLEM COMPUTATION 

For ferromagnetic bodies, B-H relation is strongly nonlinear and strongly 
depends on the temperature θ : H = ( , )θF B . This dependence is drastically close 
to the Curie temperature, and when this point is over-passed the material has the 
free space B-H relationship. The fixed point polarization method allows the 
replacement of the nonlinear media with a linear media, having the free space 
magnetic permeability 0µ  and a magnetization M  that is corrected as a function of 
magnetic induction [3] 

        ( , )= ν − θM B F B ( , )≡ θG B . (1) 

An important advantage results: one can use the eddy current integral 
equation for electromagnetic field problem computation. If we decompose the 
magnetization in Fourier series, retaining only a finite N number of harmonics, for 
each harmonic, n = 1…N, one can use the phasor nnn "' MMM j+= . For the 
two-dimensional problems, the integral equation [3] has the form 
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where ρ and nJ  are, respectively, the resistivity and the electric current density 
induced in the conducting regions Ω, nJ0  is the given current density in the 
non-ferromagnetic coil regions 0Ω , fΩ  is the region occupied by ferromagnetic 
materials, i.e. the solidifying material, r and r’ are the position vectors of the 
observation and the source points, respectively, || ,rr −=R , and k is the 
longitudinal unit vector.  

The numerical computation of equation (2) is done by employing a jℜ  
polygonal sub-domains as discretization mesh of the Ω domain, where one admits 
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that the current density is constant over each sub-domain.  In the discretization 
mesh of  Mℜ  sub-domains used also for Ω domain, which can be different from 

jℜ , one admits that the magnetization is constant over each sub-domain. Because 

the domains Ω and 0Ω  are in a relative motion the first integral from the right side 
is modified for each time step of the thermal diffusion problem. If the system 
contains also a ferromagnetic yoke for magnetic field concentration [13], then the 
domain fΩ  is different from 0Ω  and the yoke’s area fΩ - 0Ω  is in relative 

motion compared to 0Ω . In this case, also the second term from the right side of 
equation (2) is modified at each time step. To increase the computation speed of 
the eddy current problem is important to have the analytic form of the integrals 
used to evaluate the coefficients of all the matrices in the numerical form of 
equation (2). 

The n-th harmonic of flux density is computed with the realtion 
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For the numeric form of relation (3) one takes the average value of the 
magnetic induction in the sub-domains of the discretization mesh Mℜ . From nB  
harmonics, we obtain the magnetic induction value in the time domain and we 
correct the magnetization in Mℜ , according to relation (1).  

3. THERMAL DIFFUSION PROBLEM 

The temperature distribution is obtained by solving the thermal diffusion 
equation  

( ) p
t

cv =
∂
θ∂

+θ∇λ⋅∇− , (4) 

where λ  is the thermal conductibility, vc  is the thermal capacity of the 
ferromagnetic material, both parameters depending on temperature, and p are 
specific losses obtained from eddy current problem computation. For the 
liquid-solid phase transition, one adopts a caloric capacity which results from the 
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solidification latent heat 
δθ

=
sc' , where s is the solidification latent heat and δθ  is 

a temperature interval associated to the transition. 
The boundary condition is 

                       0))(( =θ−θα+
∂
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λ et
n

, (5) 

where eθ  is the outer temperature, α  is the thermal convection coefficient, which 
is time dependent, because of the crucible’s movement. The time discretization of 
equation (4) is done using the trapezoidal method and the space discretization is 
done using the finite element method, using a triangular discretization mesh. The 
thermal conductibility and the caloric capacity are iteratively corrected as a 
function of temperature.  

4. THE MOVING SPEED OF THE CRUCIBLE 

In the controlled solidification technology, the moving speed of the crucible 
is decisive in order to establish a correct solidification surface shape evolution. A 
too rapid movement can distort this surface to a non acceptable level, while a too 
slow speed leads to an increase of the technological process time and, sometimes, it 
can distort the solidification surface. In order to establish the moving speed of the 
crucible we impose a maximum deviation from the plane shape for the 
solidification surface, which when it is over-passed, the speed is reduced. At the 
same time, we have an imposed a minimum deviation, which if it is not obtained, 
the speed is increased. Moreover, the speed is controlled such that to obtain a 
largely enough temperature gradient, modelled by the maximum temperature 
difference from the test. The speed adaptation takes place during the 
Crank-Nicholson computation of the thermal diffusion problem. 

5. NUMERICAL EXAMPLE 

A coil having 15×60 mm, with a sinusoidal current density of  4 2A/mm , at 
50 Hz, induces eddy currents in a melted ferromagnetic piece, with section 
20 × 60 mm (Fig. 1a), having, at 20 C° , the resistivity m10 7 ⋅Ω− , the thermal 
conductibility )mK(W46 ⋅ , the thermal capacity 6104× )mK(J 3⋅ , all 
depending on the temperature (Table 1). Near the coil’s thermal insulation, we 
admit the value )mK(W2.0 2⋅=α  for the thermal convection coefficient. In order 
to obtain a good temperature coefficient, we adopt a thermal convection coefficient 
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)mK(W500 2⋅=α  under the thermal insulation and )mK(W800 2⋅=α  at the 
crucible’s basis. 

Table 1  

Temperature dependence of resistivity, thermal conductibility and thermal capacity for the 
ferromagnetic material (taken from [13]) 

C)(°θ  m)10( -7 Ω×ρ  ( )m)(KW ⋅λ  ( ))m(KJ10 36 ⋅×vc  
100 1.04 40.0 3.97 
500 1.20 35.0 3.80 

1000 1.45 30.0 3.63 
1300 1.60 27.0 3.50 
1500 1.72 25.0 3.34 
1800 1.89 22.0 3.00 
2000 2.00 20.6 2.86 

 
The melting temperature is 1300 C°  and the latent heat is 2.142 910⋅ 3J/m . 

Below Curie temperature, of 780 C° , B-H relation is nonlinear and depends on 
temperature (Fig. 1). 
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Fig. 1 – H-B relationship for different temperatures [13]. 
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A maximum value of 4 mm has been imposed for the solidification surface 
deviation with respect to the plane surface, which, if it is over-passed, the speed is 
reduced. At the same time, a minimum value of 0.5 mm has been imposed, under 
which the speed can be increased. 

 In order to evaluate the temperature gradient, a minimum value of 500 0C 
has been imposed with respect to which the maximum temperature difference is 
compared and the speed modification takes place with respect to the weight of this 
ratio. In Fig. 2 there is depicted the evolution of the optimum speed. 

The time evolution of the isotherms can be followed in Fig. 3. The time 
evolution 1300 C°  isotherm is given in Fig. 4. In Fig. 5 one can see the Curie 
isotherms evolution. The temperature decreased under Curie point leads to the 
apparition of the ferromagnetism (a drastically increase of the magnetic 
“permeability” accompanied by the nonlinear B-H relationship modification). 

 In Fig. 6 one can notice the change of the field line spectrum, together with 
the decrease of the temperature below Curie point. The field lines are attracted in 
the area with a nonlinear ferromagnetic characteristic of the material. 
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Fig. 2 – Time evolution of the crucible’s speed. 
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a) t = 21 s b) t = 44 s c) t = 58 s d) t = 78 s e) t = 103 s 

Fig. 4 – Time evolution of 1300 C°  isotherm. 
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Fig. 3 – Time evolution of the isotherms. 
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a) t = 78 s b) t = 97 s c) t = 103 s a) t = 9 s b) t = 103 s 

Fig. 5 – Time evolution of Curie isotherm (780 C° ). Fig. 6 – Field lines. 

6. CONCLUSIONS 

A numerical method for the phase change surface position evaluation and the 
computation of the movement in the eddy current controlled solidification is 
proposed. For thermal diffusion problem computation it is necessary to take into 
account that the boundary conditions is changing during the crucible motion. To 
ensure the Crank-Nicholson procedure stability, it was necessary to adjust the time 
step both in the neighbourhood of the solidification temperature and in the 
neighbourhood of Curie point, where B-H relationship drastically changes. The 
time step modification takes place by imposing a sufficiently small temperature 
variation in all nodes of the thermal discretization mesh and it represents the main 
time consumer of the elaborated software programs. However, in order to reduce 
the computation time, when correcting the time step, one solved only the thermal 
diffusion problem, without solving the eddy current problem, too. An efficient 
solution to avoid the numerical thermal field problems computation in the 
neighbourhood of the solidification point is proposed in [14]. 

A very fast and accurate procedure for the computation of the 
electromagnetic field periodic problem in nonlinear media with moving bodies was 
developed, based on the fixed point polarization method. The nonlinear media is 
replaced by a linear one where the nonlinearity is transferred to the magnetization. 
This one can be decomposed using Fourier series, retaining a convenient number of 
harmonics, the field problem being computed for each harmonic, using the 
complex representation. The convergence of the method is always ensured. Using 
the free space permeability, allows the use of the eddy current integral equation, 
with its important advantages for crucible’s movement modelling.  
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