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OPTIMIZATION OF THE INDUCTOR OF AN INDUCTION COOKING
SYSTEM USING PARTICLE SWARM OPTIMIZATION METHOD AND
FUZZY LOGIC CONTROLLER

ABDELDJALIL ABDELKADER MEKKI', ABDELKADER KANSAB', MOHAMED MATALLAH?, MOULOUD FELIACHI®
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To improve the performances of an induction cooking system we propose a method that yields a better homogeneity of the
temperature on the pan’s bottom and a good regulation of the temperature. Firstly we apply the optimization method based on Self-
adaptiveparticle swarm optimization technique combined with the 2D FEM method in order to determine the inductor optimal slots
distribution and their dimensions :Secondly, a temperature control technique based on the so-called Fuzzy logiccontrol is used in
order to limit the excess temperature on the pan’s bottom and to get the desired value suitable for cooking (150...200 °C).

1. INTRODUCTION

Induction cooking provides faster heating, improved
thermal efficiency, and low pollution as compared to a gas
burner [1]. The principle of induction heating is based on
three rules (laws of Lentz, Lorentz and Joule) where the
magnetic field created by the inductor induces eddy
currents on the pan’s bottom and these induced currents
cause the heating of the pan by Joule effect.

The plan of this work is twofold: it aims at obtaining an
inductor geometry which gives a uniform distribution of the
temperature on the bottom of the pan. Secondly, we propose a
technique of control of this temperature. The temperature
distribution on the pan’s bottom is determined by modelling the
magneto thermal phenomena of the system by a 2D finite
element method (FEM) and taking into consideration the
nonlinearity of the system [2,3]. In order to have a homogeneous
temperature on the pan’s bottom, we propose an inductor
structure in which the coils are optimally placed in slots (Fig. 1).

The optimal inductor geometry giving a uniform
distribution of the temperature was obtained in previous
researches by using intelligent methods of optimizations
(Genetic Algorithms and Neural Networks) [3,4], but by
varying distances (d;) only (Fig. 1). The goal of this work is
to find an optimal inductor geometry that gives a better
uniformity of the temperature distribution than that
obtained in [3,4], by varying both parameters (d; and z)
simultaneously (Fig. 1). However, to achieve such a goal,
we model the magneto thermal phenomena of the system by
a finite element method (FEM), combined with the self-
adaptive particle swarm optimization method.
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Fig. 1 — Inductor with four slots.

After obtaining the distribution of temperature (Fig. 8).

The latter figure shows that the temperature increases up to
760 °C (Curie point of pan's material) which exceeds the
value of cooking temperature (150...200 °C). To have the
desired temperature of cooking, we used a regulation's
technique of temperature based on Fuzzy Logic Controller
(FLC) method [11,12]. This paper is organised as follows:
in section 2, the mathematical modeling and finite element
analysisare presented. The temperature distribution from
the use of the uniform dimension of slots is determined in
section 3. In order to have a uniform temperature
distribution, the optimal dimensions of slots are calculated
in section 4 using self-adaptive particle swarm optimization
method. The utilisation of the Fuzzy logic (FL) method to
control the temperature evolution is given in section 5.
Finally, the conclusion is presented in section 6.

2. MATHEMATICAL MODELING AND FINITE
ELEMENTANALYSIS

The aim is to search for a uniform distribution of the
temperature on the pan’s bottom of the cooking device.

To achieve this aim, it is important to establish the
mathematical model of the system. The mathematical
modeling of induction cooking devises uses both the
magneto-dynamic and the thermal equations. The magneto-
dynamic formulation is useful for the determination of the
distribution of induced currents generated by the inductor
which represents the image of the temperature distribution
on the pan’s bottom. The eddy current density and the heat
source can be calculated by solving the coupled magneto-
dynamic and heat equations. Since the system possesses an
axial symmetry, a 2D solution is possible.

Using the magnetic vector potential A=rAg, the
electromagnetic phenomena are modeled by the well-
known magneto-thermal equations [5,6]:
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where: The magneto-thermal calculations are performed using the
V,0,® — magnetic reluctivity, electric conductivity, following steps:

angular frequency; »>  Step 1: initialization of the magnetic reluctivity,
J T —electric current density, temperature; the electric conductivity, and the

AP osC b~ thermal conductivity, masse density, specific heat.

It remains to achieve the magneto-thermal model to give
boundary conditions. The finite element method 2D-FEM
was used for the numerical modeling of both the governing
eq. (1) and (2) using the following boundary conditions (4)
and (5). The boundary conditions in the borders of the pan
are of Neumann type conditions

oT
-A—=n(T-T,). 4
L1, @

The boundary conditions for the electromagnetic

problem are of Dirichlet type

A=0, )

where h is the convection coefficient, T, is the ambient
temperature and T is the calculated temperature.

The axisymmetric structure of the system makes h
nonlinear due to the convection effect of the air nearby [7].
In our case we assume that h has a constant value along the
radius of the pan. The pan is made of a material of stainless
steel the properties of which are given in [3].

3. CALCULATION AND DETERMINATION OF THE
TEMPERATURE DISTRIBUTION BEFORE
OPTIMIZATION

The considered object is an induction heating pan. The
inductor has four slots containing the exciting coils. For the first
step we consider that the dimensions (widths d; and thicknesses
z) of the slots and distances between the slots have a uniform
distribution as shown in (Fig. 1, 2), where d = 15.55 mm and
Z =2 mm. The other parameters are shown in Table 1.
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Fig. 2 — System model used in the Program
Table1
Parameters of system
Symbole Magnitude Quantity
R (mm) Radius of pan 140
e; (mm) Inductor thickness 3.8
e, (mm) Gap thickness 4
e. (mm) Container thickness 3
di,ds,.d; (mm) widths 15.55
z; (mm) Throat thickness 2
Wr Ferrite relative permeability 2500
f (Hz) Frequency 20%10°
T (A/m?*) Current density 2.5%10°
A (W/m*°K) Thermal conductivity 26
h (W/m?>°C) Convection coefficient 20
pm (Kg/m?) Masse density 7700
C, (J/Kg°C) Specific heat 460

temperature G, g, 1o;

»  Step 2: calculation of the magnetic vector potential (A);

» Step 3: calculation of the heat source density
q= rA-AT

»  Step 4: calculation of the temperature T where we
use a time step of 10 s. If T <650°C go
back to step 2 or else go to step 5;

»  Step 5: display of the results.
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Fig. 3 — Temperature evolution versus time

The simulation results obtained are shown in (Fig. 3-4).
It is clear from (Fig. 4) that the temperature distribution on
the pan's bottom is not uniform. Figure 3 shows that the
temperature evolution in the center of the pan’s bottom is
limited at the value of 760 C°, the Curie point of pan's
material [4-6].
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Fig. 4 — Temperature distribution on pan’s bottom.

4. TEMPERATURE DISTRIBUTION WITH
OPTIMIZATION

The objective is to have a homogeneous temperature
distribution on the pan's bottom. In this work we suggest
the use of the PSO Algorithm to determine the best
dimensions of slots (coils) in the inductor by modifying
simultaneously the widths the slots, di, and their
thicknesses, z. This type of optimization is widely used in
nonlinear and complex systems [8].

4.1. PROBLEM PRESENTATION

The problem is to find an objective function, eq. (7),
which gives the best results. For that, several iterations k of
calculation tests must be done in order to determine the
optimal geometry of the inductor. The diagram is
summarized in Fig. 5.

The optimization problem consists of minimizing

fo (d.2) = fyy(dd,,K....d,,2,2,K...,Z,). (6)
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where:

T¢  is the desired temperature;

T, is the calculated temperature at each point in the
bottom of the pan;

NT is the number of elements in the bottom of the pan.

Searching parameters
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Fig. 5. — Diagram steps of evaluation the objective function.

4.2. SELF-ADAPTIVE PARTICLE SWARM
OPTIMIZATION

PSO Algorithm has been developed by Kenedy and
Eberharet in 1995, and it is based on the movement of a group
of animals like a school of fish or a swarm of bees [8,9].

In this technique a particle swarm (population) comprises
a number of particles (individuals) and each particle is
represented by a number of parameters to be optimized.
Each particle position represents a candidate solution of the
optimization problem. In PSO, each particle in the swarm
moves in a D-dimensional space searching for the best
position which is defined by an objective function.

In this work, there are thirteen (13) parameters to be
optimized, which are the dimensions of each particle:

{dl_dz_ ...... doz.22.----- 24}.

The PSO Algorithm begins with a randomly generated
position of the swarm and each particle moves in the search
space with a randomly generated velocity [9].In this work,

the i"" particle is defined as {d“,dZi N N A S zu}.

The position x; and the velocity vector V§ of the ith
particle at iteration k in the thirteen dimensional space are
given by the eq. (8) and (9) respectively

Xﬁ:(dll(i’dIZ(ia'”dl‘;i’ Z|1<iazl2(ia'~'zl§i)9 (8)
€))

» the position giving the best fitness value at k
iteration of the i" particle is saved and represented as

Vi = (Vléli ViV o ’Vléu’Vlézi’---Vl%i)v

{Pbestd {(i’ Pbestd ]Ei K Pbestd Ié i Pbestzﬁ- , Pbestzéi X, Pbestzﬁ i }

» the best position giving the best values among all
particles in the swarm at iteration (k) is
represented by

%bestdlk Gbestd¥ K Gbestd! GbestzX Ghesizk K GbestzX }
To improve the quality of the solution and the convergence
characteristics, the standard PSO technique is modified by the
use of the time varying inertia weight factor [10].
The updated position and velocity of if particle in self-
adaptive PSO can be expressed as:

V,:,k“ =m* V,:,k +¢) xrandy x (Pbest_’; - X,kj ¢y X randy x (Gbest§ - Xll‘j'.],(l())

Xk = xkevie, 1)
where:
V§ s the velocity of particle i at iteration k;
® is the inertia weight;
Ci,C, are the acceleration coefficients;
rand,,rand, are random numbers between 0 and 1;
X is the position of particle i at iteration k;
Pbestf is the Best position of particle i at iteration k;

Gbestﬁ is the Best position of the swarm until iteration k.

At each time step, the position and the velocity of each
particle (i) are updated by evaluating the objective function
and comparing between the new solution (best position) with
the old Pbest (the best position for the (i) particle at iteration
(k-1)) and Gbest (the best position of the swarm at iteration
(k-1)) [9-10].The weighting function is calculated as:

O = gy — Dmx — Oumin ey (12)
1e max
where:
Omx> Omn  are the maximal and the minimal weight
values respectively;
iter e, It€F are the maximum number of iterations and

the current iteration number respectively.

4.3. PROPOSED IMPLEMENTATION WORK

To determine the optimal slots distribution and their
dimensions, PSO algorithm has been used by the use of the
following steps:

» Stepl. Initialize the population size (m), set the
maximum iteration, iter.,, inertia weight, ®,
acceleration constants (C;,C;) and the number of
parameter, N, to be optimized. Set the parameters of
the simulated system as shown in Table 1.

> Step 2. Randomly generate the initial position and
velocity of each i"" particle in swarm as shown in eq.
(8) and (9).

> Step 3. For each particle parameter, solve the
magneto-thermal problem and then evaluate the
fitness function (the process of calculation of the
fitness function for each particle parameter is shown
in Fig. 6.

» Step 4. Assign (Pbest) as the best fitness values of
particle position; assign Gbest as the best fitness
values among all particles.

» Step 5. The steps 5-1 and 5-2 are repeated until the
termination criteria are achieved, or until the number
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of iterations reaches its maximum limit.

»  Step 5-1. At each iteration k, the updated velocity and
position of in particle are given by eq. (10), (11).
Step 5-2. For each particle i" evaluate a fitness
function f,,;(d;.z;) (similar to step3). Assign the
new (Pbest) and (Gbest) (similar to step4).

»  Step 6. Produce the Gbest of particles

kN

k k k k k
{7bestd1 ,Gbestds K ,Gbestd9 ,Gbestz1 ,Gbestz2 K ,Gbestz4 |
and then take them as optimal dimensions of the
slots in the inductor which give a uniform
temperature distribution on the pan’s bottom.
4.4. SIMULATION AND RESULTS

The proposed method is developed using Matlab code,
and the simulations were done on a computer with Intel (R)
Pentium (R) CPU @2.16 GHz, 2 GB RAM The parameters
of the self-adaptive PSO algorithms are shown in Table 2.
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Fig. 7 — Temperature distribution on pan’s bottom.
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Table 2
parameters setting of self-adaptive PSO technique
Algorithm Inertia weight | Acceleration Population
® coefficients size
C1,C
Self-adaptive ®=04 ci=2 30
PSO =09 c, =2

The numerical results are achieved after 40 iterations
corresponding to about 16 h, with an acceptable error of € =
0.027. The temperature distribution is represented in Fig. 7.
After convergence the Self-adaptive PSO method gives a
homogeneous distribution of the temperature along a ray of the
pan. The best dimensions of the slots are shown in Table 3,
where the desired optimal geometry of the inductor is shown in
Fig. 6. The evolution of the temperature as a function of time
in the centre on the pan’s bottom is shown in Fig. 8.

Table 3
Optimal dimensions of slots

Parameters (mm) WIPSO
dl 19.9
d2 15.6
d3 11.2
d4 19.3
ds 16.3
do 15.6
d7 18.4
d8 17.3
do 6.7
Z1 3.2
Z2 2.3
73 2.7
74 3.2
0.36
0.34
B 0.321
g 0.3  —  E— T
0.28}
0.26}
0 002 004 006 008 01 012 o014

distance from center (m)

Fig. 6 — Geometry of the inductor obtained with Self-adaptive PSO.
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Fig. 8 — Temperature evolution as a function of time in centre of pan.

Figure 8 shows that the temperature exceeds the desired
temperature of cooking (150...250 °C) and increases up to
600 °C and more. For this reason, we suggest a control
method of temperature based on fuzzy logic control.

5.FUZZY LOGIC

The purpose of using a controller is to regulate the
temperature on the pan’s bottom around the value of
cooking temperature (150...250 °C). In this section, we will
use the optimal geometry obtained with Self-adaptive PSO
technique to control the temperature evolution versus time
by the use of fuzzy logic control.

5.1. REGULATION

Fuzzy Logic Controller (FLC) was strongly requested
these last years for nonlinear systems. In fuzzy logic, there
are three main phases: fuzzification, inference and
defuzzification [11,12].

Here the FEM is used to solve magneto-thermal
formulation then to determining the evolution of the
temperature, T;, in the pan bottom, which can be adjusted
by adjusting the current density, J, in the inductor.

In this part we use the characteristics of the fuzzy logic
controller, FLC, to control the evolution of the temperatures
in the pan bottom. The temperature, T;, calculated in the
pan’s bottom at each time step was selected as the
controller input, the current density, J, has been selected as
the controller output and then injected into the bloc of
induction cooking system. For this, the FLC comprises an
input parameter, T; and an output parameter, J, as shown in
Fig. 9.

5.1.1. FUZZIFICATION

In this step, the real variables are changed into linguistic
ones. Here the values of the membership function are
converted to the linguistic variables in three fuzzy subsets for
input, which are: C (cold), M (medium), H (hot) into three
fuzzy subsets for output: Low (L), (M) medium, upper (U).
The form of the membership functions and the repartition of
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fuzzy subsets for the input and output are shown in Fig. 10,11.

5.1.2. INFERENCE METHOD

In the fuzzy inference, the input is taken to generate the
fuzzy outputs by the use of the fuzzy rules. In addition, the
Min (minimum) operator is used to determine the output
membership function of each rule. These rules are:

Rulel: If temperature T; is C then current density J is U;

Rule2: If temperature T; is M then current density J is M;

Rule3: If temperature T; is H then current density Jis L.

The determination of membership functions depends on
the human expertise and the knowledge of the change in the
temperature depending on the current density in the
induction cooking system.

5.1.3. DEFUZZIFICAION
In the defuzzification phase, the FLC output is calculated
using the Centroid method, which is the value of current
density in this work.

Fuzzy Logic Controller (FLC)

Fule bass

T
! Induction cooking .
Ewstéme b

Fig. 9 — diagram of FLC.
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Fig. 10 — Fuzzy logic control membership function for input.
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Fig. 11 — Fuzzy logic control membership function for output.

In this work, simulation is done with the help of the FLC
designer toolbox in MATLAB. The results of the regulation
are shown in (Fig. 12), where we see that the use of Fuzzy
logic control assures a good regulation and limits the
temperature variation within the band used for cooking
which is fixed at 220 C°.
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Fig. 12 — Temperature evolution as a function of time after regulation.

800

700
—~ 600
g
g
<
o 500 i
=}
& I I —
gg- 400 — — — 4 — —— —1— | before optimization H
g ! ! after optimization
I I U .
€30k ---4---—-1-1 after optimization and regulation ||
I I I I I I
200 L= — -
[ I [ I [ [
I I I I I I
100 | | | | | |
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

distance from center (m)

Fig. 13 — Temperature distribution after optimization and regulation.

Figure 13 show that after optimization and regulation of
the temperature, we have the desired homogeneous
temperature on the pan's bottom corresponding to the
cooking temperature range.

6. CONCLUSION

In this paper we presented a way to achieve a uniform
distribution of the temperature of induction cooking system.
A finite element method is used to analyse the magneto-
thermal problem and a Self-adaptive PSO technique is
employed on the induction-heating cooking device to
optimize the structure of the slots in the inductor.

A technique of regulation has been adopted for the work
using the fuzzy logic control to find out the adapted
temperature for the induction cooking system. The main
feature of the fuzzy logic method is the simplicity of
implementation and its robustness.

This study shows that the proposed fuzzy logic technique
gives a good regulation of the temperature which is in the
cooking range, i.€., between 150 C° and 250 C°.

Received on August 1, 2020
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