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To improve the performances of an induction cooking system we propose a method that yields a better homogeneity of the 
temperature on the pan’s bottom and a good regulation of the temperature. Firstly we apply the optimization method based on Self-
adaptiveparticle swarm optimization technique combined with the 2D FEM method in order to determine the inductor optimal slots 
distribution and their dimensions .Secondly, a temperature control technique based on the so-called Fuzzy logiccontrol is used in 
order to limit the excess temperature on the pan’s bottom and to get the desired value suitable for cooking (150…200 °C).  

1. INTRODUCTION 
Induction cooking provides faster heating, improved 

thermal efficiency, and low pollution as compared to a gas 
burner [1]. The principle of induction heating is based on 
three rules (laws of Lentz, Lorentz and Joule) where the 
magnetic field created by the inductor induces eddy 
currents on the pan’s bottom and these induced currents 
cause the heating of the pan by Joule effect. 

The plan of this work is twofold: it aims at obtaining an 
inductor geometry which gives a uniform distribution of the 
temperature on the bottom of the pan. Secondly, we propose a 
technique of control of this temperature. The temperature 
distribution on the pan’s bottom is determined by modelling the 
magneto thermal phenomena of the system by a 2D finite 
element method (FEM) and taking into consideration the 
nonlinearity of the system [2,3]. In order to have a homogeneous 
temperature on the pan’s bottom, we propose an inductor 
structure in which the coils are optimally placed in slots (Fig. 1). 

The optimal inductor geometry giving a uniform 
distribution of the temperature was obtained in previous 
researches by using intelligent methods of optimizations 
(Genetic Algorithms and Neural Networks) [3,4], but by 
varying distances (di) only (Fig. 1). The goal of this work is 
to find an optimal inductor geometry that gives a better 
uniformity of the temperature distribution than that 
obtained in [3,4], by varying both parameters (di and zi) 
simultaneously (Fig. 1). However, to achieve such a goal, 
we model the magneto thermal phenomena of the system by 
a finite element method (FEM), combined with the self-
adaptive particle swarm optimization method. 

 
Fig. 1 – Inductor with four slots. 

After obtaining the distribution of temperature (Fig. 8). 

The latter figure shows that the temperature increases up to 
760 °C (Curie point of pan's material) which exceeds the 
value of cooking temperature (150…200 °C). To have the 
desired temperature of cooking, we used a regulation's 
technique of temperature based on Fuzzy Logic Controller 
(FLC) method [11,12]. This paper is organised as follows: 
in section 2, the mathematical modeling and finite element 
analysisare presented. The temperature distribution from 
the use of the uniform dimension of slots is determined in 
section 3. In order to have a uniform temperature 
distribution, the optimal dimensions of slots are calculated 
in section 4 using self-adaptive particle swarm optimization 
method. The utilisation of the Fuzzy logic (FL) method to 
control the temperature evolution is given in section 5. 
Finally, the conclusion is presented in section 6. 

2.  MATHEMATICAL MODELING AND FINITE 
ELEMENTANALYSIS 

The aim is to search for a uniform distribution of the 
temperature on the pan’s bottom of the cooking device. 

To achieve this aim, it is important to establish the 
mathematical model of the system. The mathematical 
modeling of induction cooking devises uses both the 
magneto-dynamic and the thermal equations. The magneto-
dynamic formulation is useful for the determination of the 
distribution of induced currents generated by the inductor 
which represents the image of the temperature distribution 
on the pan’s bottom. The eddy current density and the heat 
source can be calculated by solving the coupled magneto-
dynamic and heat equations. Since the system possesses an 
axial symmetry, a 2D solution is possible. 

Using the magnetic vector potential A = rAϑ , the 
electromagnetic phenomena are modeled by the well-
known magneto-thermal equations [5,6]: 

jω
σA
r

−
∂
∂r

ν
r

∂A
∂r

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ −

∂
∂z

ν
r

∂A
∂z

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = J , (1) 

 λ∇2T + q = ρmc p
∂T

∂t
, (2) 

 q =
1

r 2
ωσ2 A⋅ A*, (3) 

di 

e1
zi
e3
e4

ferrite pan coilsgap 



186 Particle swarm, fuzzy logic induction system optimization 2 

where: 
ν,σ,ω – magnetic reluctivity, electric conductivity, 

angular frequency; 
J, T – electric current density, temperature; 
λ,ρm ,cp  – thermal conductivity, masse density, specific heat. 

It remains to achieve the magneto-thermal model to give 
boundary conditions. The finite element method 2D-FEM 
was used for the numerical modeling of both the governing 
eq. (1) and (2) using the following boundary conditions (4) 
and (5). The boundary conditions in the borders of the pan 
are of Neumann type conditions 

 −λ
∂T

∂n
= h T −Tn( ).  (4) 

The boundary conditions for the electromagnetic 
problem are of Dirichlet type 

 A = 0, (5) 

where h  is the convection coefficient, Tn is the ambient 
temperature and T  is the calculated temperature. 

The axisymmetric structure of the system makes h 
nonlinear due to the convection effect of the air nearby [7]. 
In our case we assume that h has a constant value along the 
radius of the pan. The pan is made of a material of stainless 
steel the properties of which are given in [3]. 

3. CALCULATION AND DETERMINATION OF THE 
TEMPERATURE DISTRIBUTION BEFORE 

OPTIMIZATION 
The considered object is an induction heating pan. The 

inductor has four slots containing the exciting coils. For the first 
step we consider that the dimensions (widths di and thicknesses 
zi) of the slots and distances between the slots have a uniform 
distribution as shown in (Fig. 1, 2), where di = 15.55 mm and 
zi = 2 mm. The other parameters are shown in Table 1. 
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Fig. 2 – System model used in the Program 

Table 1 
Parameters of system 

Symbole Magnitude  Quantity 
R (mm) 
ei (mm) 
eg  (mm) 
ec (mm) 

d1,d2,.di (mm) 
zi (mm) 

µf 
f (Hz) 

J (A/m2 ) 
λ   (W/m*°K) 
h  (W/m2°C) 
ρm  (Kg/m3) 
Cp  (J/Kg°C) 

Radius of pan 
Inductor thickness 

Gap thickness 
Container thickness 

widths 
Throat thickness 

Ferrite relative permeability 
Frequency 

Current density 
Thermal conductivity 
Convection coefficient 

Masse density 
Specific heat 

140 
3.8 
4 
3 

15.55 
2 

2500 
20*103 
2.5*106 

26 
20 

7700 
460 

The magneto-thermal calculations are performed using the 
following steps: 

 Step 1: initialization of the magnetic reluctivity, 
the electric conductivity, and the 
temperature σ0, μ0, T0; 

 Step 2: calculation of the magnetic vector potential (A); 
 Step 3: calculation of the heat source density 

q = r−2A ⋅ A* ; 
 Step 4: calculation of the temperatureT where we 

use a time step of 10 s. If   T ≤ 650oC  go 
back to step 2 or else go to step 5; 

 Step 5: display of the results. 
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Fig. 3 – Temperature evolution versus time 

The simulation results obtained are shown in (Fig. 3-4). 
It is clear from (Fig. 4) that the temperature distribution on 
the pan's bottom is not uniform. Figure 3 shows that the 
temperature evolution in the center of the pan’s bottom is 
limited at the value of 760 C°, the Curie point of pan's 
material [4–6]. 
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Fig. 4 – Temperature distribution on pan’s bottom. 

4. TEMPERATURE DISTRIBUTION WITH 
OPTIMIZATION 

The objective is to have a homogeneous temperature 
distribution on the pan's bottom. In this work we suggest 
the use of the PSO Algorithm to determine the best 
dimensions of slots (coils) in the inductor by modifying 
simultaneously the widths the slots, di, and their 
thicknesses, zi. This type of optimization is widely used in 
nonlinear and complex systems [8]. 

4.1. PROBLEM PRESENTATION 
The problem is to find an objective function, eq. (7), 

which gives the best results. For that, several iterations k of 
calculation tests must be done in order to determine the 
optimal geometry of the inductor. The diagram is 
summarized in Fig. 5.  

The optimization problem consists of minimizing 

 ( ) ( )1 2 4 1 2 4, , , , , , , ,obj i i objf d z f d d K d z z K z= … … , (6) 
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where: 
Tf is the desired temperature; 
Ti is the calculated temperature at each point in the 

bottom of the pan; 
NT is the number of elements in the bottom of the pan. 

 
Fig. 5. – Diagram steps of evaluation the objective function.  

4.2. SELF-ADAPTIVE PARTICLE SWARM 
OPTIMIZATION 

PSO Algorithm has been developed by Kenedy and 
Eberharet in 1995, and it is based on the movement of a group 
of animals like a school of fish or a swarm of bees [8,9]. 

In this technique a particle swarm (population) comprises 
a number of particles (individuals) and each particle is 
represented by a number of parameters to be optimized. 
Each particle position represents a candidate solution of the 
optimization problem. In PSO, each particle in the swarm 
moves in a D-dimensional space searching for the best 
position which is defined by an objective function. 

In this work, there are thirteen (13) parameters to be 
optimized, which are the dimensions of each particle: 
{ }zzzddd 4,2,1,9,2,1 ………… . 

The PSO Algorithm begins with a randomly generated 
position of the swarm and each particle moves in the search 
space with a randomly generated velocity [9].In this work, 
the ith particle is defined as { }z,z,z,dd,d iiiiii 421921 ………… . 

The position xk
ij  and the velocity vector V k

ij  of the ith 
particle at iteration k in the thirteen dimensional space are 
given by the eq. (8) and (9) respectively 
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 the position giving the best fitness value at k 
iteration of the ith particle is saved and represented as 

  1i
kPbestd{ , 2i

kPbestd ,K 9i
kPbestd , 1i

kPbestz , 2i
kPbestz ,K , 4i

kPbestz } 

 the best position giving the best values among all 
particles in the swarm at iteration (k) is 
represented by 

 
Gbestd1

k ,Gbestd2
k ,K ,Gbestd9

k ,Gbestz1
k ,Gbestz2

k ,K ,Gbestz4
k{ }. 

To improve the quality of the solution and the convergence 
characteristics, the standard PSO technique is modified by the 
use of the time varying inertia weight factor [10]. 

The updated position and velocity of ith particle in self-
adaptive PSO can be expressed as:   

 

Vij
k+1 = ω∗Vij

k + c1 × rand1 × Pbest j
k − Xij

k( )+ c2 × rand2 × Gbest j
k − Xij

k( ),(10) 

 X ij
k +1 = X ij

k + Vij
k +1 , (11) 

where:  
V k

ij       is the velocity of particle i at iteration k; 
ω         is the inertia weight; 
c1 , c2    are the acceleration coefficients; 
rand1 , rand2     are random numbers between 0 and 1; 
xk

ij             is the position of particle i at iteration k; 
Pbest k

ij      is the Best position of particle i at iteration k; 
Gbest k

ij      is the Best position of the swarm until iteration k. 
At each time step, the position and the velocity of each 

particle (i) are updated by evaluating the objective function 
and comparing between the new solution (best position) with 
the old Pbest (the best position for the (i) particle at iteration 
(k-1)) and Gbest (the best position of the swarm at iteration 
(k-1)) [9-10].The weighting function is calculated as: 

  iter
iter

×ω−ω−ω=ω
max

minmax
max , (12) 

where: 
ωmax ,  ωmin  are the maximal and the minimal weight 

values respectively; 
itermax , iter  are the maximum number of iterations and 

the current iteration number respectively. 
 

4.3. PROPOSED IMPLEMENTATION WORK 
To determine the optimal slots distribution and their 

dimensions, PSO algorithm has been used by the use of the 
following steps: 
 

 Step1. Initialize the population size (m), set the 
maximum iteration, itermax, inertia weight, ω , 
acceleration constants (c1,c2) and the number of 
parameter, n, to be optimized. Set the parameters of 
the simulated system as shown in Table 1. 

 Step 2. Randomly generate the initial position and 
velocity of each ith particle in swarm as shown in eq. 
(8) and (9). 

 Step 3. For each particle parameter, solve the 
magneto-thermal problem and then evaluate the 
fitness function (the process of calculation of the 
fitness function for each particle parameter is shown 
in Fig. 6. 

 Step 4. Assign (Pbest) as the best fitness values of 
particle position; assign Gbest as the best fitness 
values among all particles. 

 Step 5. The steps 5-1 and 5-2 are repeated until the 
termination criteria are achieved, or until the number 
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of iterations reaches its maximum limit. 
 Step 5-1. At each iteration k, the updated velocity and 

position of ith particle are given by eq. (10), (11). 
Step 5-2. For each particle ith evaluate a fitness 
function fobj di ,zi( ) (similar to step3). Assign the 
new (Pbest) and (Gbest) (similar to step4). 

 Step 6. Produce the Gbest of particles  

  
Gbestd1

k ,Gbestd2
k ,K ,Gbestd9

k ,Gbestz1
k ,Gbestz2

k ,K ,Gbestz4
k{ } 

and then take them as optimal dimensions of the 
slots in the inductor which give a uniform 
temperature distribution on the pan’s bottom. 

4.4. SIMULATION AND RESULTS 
The proposed method is developed using Matlab code, 

and the simulations were done on a computer with Intel (R) 
Pentium (R) CPU @2.16 GHz, 2 GB RAM The parameters 
of the self-adaptive PSO algorithms are shown in Table 2. 

Table 2 
parameters setting of self-adaptive PSO technique 

The numerical results are achieved after 40 iterations 
corresponding to about 16 h, with an acceptable error of ε = 
0.027. The temperature distribution is represented in Fig. 7. 
After convergence the Self-adaptive PSO method gives a 
homogeneous distribution of the temperature along a ray of the 
pan. The best dimensions of the slots are shown in Table 3, 
where the desired optimal geometry of the inductor is shown in 
Fig. 6. The evolution of the temperature as a function of time 
in the centre on the pan’s bottom is shown in Fig. 8. 

Table 3  
Optimal dimensions of slots 

Parameters (mm) WIPSO 
d1 19.9 
d2 15.6 
d3 11.2 
d4 19.3 
d5 16.3 
d6 15.6 
d7 18.4 
d8 17.3 
d9 6.7 
Z1 3.2 
Z2 2.3 
Z3 2.7 
Z4 3.2 
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Fig. 6 – Geometry of the inductor obtained with Self-adaptive PSO. 
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Fig. 7 – Temperature distribution on pan’s bottom. 
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Fig. 8 – Temperature evolution as a function of time in centre of pan. 

Figure 8 shows that the temperature exceeds the desired 
temperature of cooking (150…250 °C) and increases up to 
600 °C and more. For this reason, we suggest a control 
method of temperature based on fuzzy logic control. 

5. FUZZY LOGIC 
The purpose of using a controller is to regulate the 

temperature on the pan’s bottom around the value of 
cooking temperature (150…250 °C). In this section, we will 
use the optimal geometry obtained with Self-adaptive PSO 
technique to control the temperature evolution versus time 
by the use of fuzzy logic control. 

5.1. REGULATION 
Fuzzy Logic Controller (FLC) was strongly requested 

these last years for nonlinear systems. In fuzzy logic, there 
are three main phases: fuzzification, inference and 
defuzzification [11,12]. 

Here the FEM is used to solve magneto-thermal 
formulation then to determining the evolution of the 
temperature, Ti, in the pan bottom, which can be adjusted 
by adjusting the current density, J, in the inductor. 

In this part we use the characteristics of the fuzzy logic 
controller, FLC, to control the evolution of the temperatures 
in the pan bottom. The temperature, Ti, calculated in the 
pan’s bottom at each time step was selected as the 
controller input, the current density, J, has been selected as 
the controller output and then injected into the bloc of 
induction cooking system. For this, the FLC comprises an 
input parameter, Ti and an output parameter, J, as shown in 
Fig. 9. 

5.1.1. FUZZIFICATION 
In this step, the real variables are changed into linguistic 

ones. Here the values of the membership function are 
converted to the linguistic variables in three fuzzy subsets for 
input, which are: C (cold), M (medium), H (hot) into three 
fuzzy subsets for output: Low (L), (M) medium, upper (U). 
The form of the membership functions and the repartition of 

Algorithm Inertia weight 
ω  

Acceleration 
coefficients 

c1,c2 

Population 
size 

Self-adaptive 
PSO 

ω = 0.4 
ω = 0.9 

c1 = 2 
c2 =2 

30 
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fuzzy subsets for the input and output are shown in Fig. 10,11.  
5.1.2. INFERENCE METHOD 

In the fuzzy inference, the input is taken to generate the 
fuzzy outputs by the use of the fuzzy rules. In addition, the 
Min (minimum) operator is used to determine the output 
membership function of each rule. These rules are: 

Rule1: If temperature Ti is C then current density J is U; 
Rule2: If temperature Ti is M then current density J is M; 
Rule3: If temperature Ti is H then current density J is L. 
The determination of membership functions depends on 

the human expertise and the knowledge of the change in the 
temperature depending on the current density in the 
induction cooking system. 

5.1.3. DEFUZZIFICAION 
In the defuzzification phase, the FLC output is calculated 

using the Centroid method, which is the value of current 
density in this work. 
 

 
Fig. 9 – diagram of FLC. 

 
Fig. 10 – Fuzzy logic control membership function for input. 

 
Fig. 11 – Fuzzy logic control membership function for output.  

In this work, simulation is done with the help of the FLC 
designer toolbox in MATLAB. The results of the regulation 
are shown in (Fig. 12), where we see that the use of Fuzzy 
logic control assures a good regulation and limits the 
temperature variation within the band used for cooking 
which is fixed at 220 C°. 
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Fig. 12 – Temperature evolution as a function of time after regulation. 
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Fig. 13 – Temperature distribution after optimization and regulation. 

Figure 13 show that after optimization and regulation of 
the temperature, we have the desired homogeneous 
temperature on the pan's bottom corresponding to the 
cooking temperature range. 

6. CONCLUSION 
In this paper we presented a way to achieve a uniform 

distribution of the temperature of induction cooking system. 
A finite element method is used to analyse the magneto-
thermal problem and a Self-adaptive PSO technique is 
employed on the induction-heating cooking device to 
optimize the structure of the slots in the inductor. 

A technique of regulation has been adopted for the work 
using the fuzzy logic control to find out the adapted 
temperature for the induction cooking system. The main 
feature of the fuzzy logic method is the simplicity of 
implementation and its robustness. 

This study shows that the proposed fuzzy logic technique 
gives a good regulation of the temperature which is in the 
cooking range, i.e., between 150 C° and 250 C°. 

Received on August 1, 2020 
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