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Dynamic equivalence is an important process of electrical power systems. It allows performing transient stability assessment of a 
specific area at a minimum cost. In this paper, the fourth-order model of synchronous generators with a simple exciter is used as 
an equivalent to the group of generators in the external area. Based on the post fault measurements, parameters of the 
equivalent are estimated by an optimal procedure. In this procedure, a Low-Level Teamwork Hybrid (LTH) algorithm based on 
Cuckoo search (CS) and the Chaotic Salp Swarm Algorithm (CSSA) is employed. The developed program is tested on two 
standard power systems used by most authors who have dealt with this problem. Simulation results confirm the ability of the 
reduced model to preserve the main dynamics of the original system with accuracy. A comparative study of the LTH approach 
against recently proposed metaheuristics proved the superiority of the proposed algorithm. 

1. INTRODUCTION 
With the accelerating growth of the power systems in the 

form of regional interconnections and the new diverse 
transmission structure driven by the competitive market, safe 
and stable operations of the system have become critical. 
Transient Stability Assessment (TSA) based on numerical 
integration methods or the Step-By-Step (SBS) in time-
domain is considered the most reliable and accurate method 
in which the Differential-Algebraic Equations (DAEs) are 
solved. However, performing such analysis on large-scale 
systems can be costly and time-consuming. In this regard, if 
the whole system is being replaced by an equivalent that 
maintains its dynamic characteristics, the simulation time of 
TSAs is expected to decline significantly [1–3]. 

The concept of Dynamic Equivalence (DE) was 
introduced in the middle of the last century. The problem 
has been investigated extensively by power system 
researchers and remains one of the most popular topics due 
to the challenges it poses. DE programs aim simply to 
reduce the overwhelmed of presenting large systems by 
replacing portion of the system with an equivalent [4], this 
portion is often a large system with certain electrical distant 
or geographical extent referred to as External Subsystem 
(ES), the remainder parts represents the Internal Subsystem 
(IS), this subsystem is the primary focus of the study, 
therefore it must be retained in detail. A good equivalent 
model should reproduce with accuracy the steady-state and 
the dynamic characteristics of the original system including 
the external system, while at the same time being 
compatible with the available simulation packages for 
power system analysis. 

Typically, the dynamic equivalent methods include two 
approaches classified as [5]: (i) reduction-based approaches 
[6–10]; and (ii) measurement-based approaches [11–18]. 
The former is based on the aggregation/elimination of the 
ESs with the assumption that information on the structures 
and parameters of the whole system are available. 
However, in reality, such systems may be owned by 
different utilities. Thus, information of the ES is not 
necessarily accessible. Whereas the latter focused on the 
power system measured response collected within the IS 

determined either from real-time measurements or from 
simulation programs [19]. This way, the major drawback of 
the reduction-based approaches is overcome. 

Dynamic equivalent based on measurements could play a 
vital role regardless of the unknown configuration and 
parameters of the external systems. The main procedure in 
DE measurement-based methods consists of determining 
optimum settings of control variables such as: parameters 
of the equivalent generators, gain and time constants of the 
equivalent voltage regulators, etc. Following which, the 
dynamics of the reduced system become identical to those 
in the original system when subjected to the same 
disturbance. This can be achieved by the fulfillment of 
certain objective functions. In the search of optimal 
settings, the equivalent must satisfy constraints on 
variables’ feasibility and steady-state conditions. 

In the early days [20, 21], the usual formulation of DE 
involved traditional search algorithms to find parameters of 
the equivalent, these algorithms are usually sensitive to the 
initial condition, therefore, there is a big chance the 
algorithm diverges or gets stuck in a local optimum if the 
initial point is not close enough to the global solution. 
Recently, a large number of metaheuristic optimization 
have been utilized to deal with this issue. Among them, the 
following techniques are highlighted and discussed in [11, 
12, 22–24]: (i) Multi-objective Salp Swarm Algorithm 
(MSSA); (ii) Mean-Variance Mapping Optimization 
(MVMO) with multi-parent crossover; (iii) Modified 
Genetic Algorithms (MGA) with a selected initial 
population; (iv) Genetic Algorithm and the Grey-Box 
approach (GA-GB); and (v) Grey Wolf Optimizer (GWO). 

Due to the complex nature of the power system 
dynamics, these algorithms may still occasionally be 
trapped into some local optima. In fact, there is room for 
improvement. An algorithm that combines the merits of 
global and local search algorithms is needed. This paper 
proposed a hybrid model based on the Cuckoo Search 
algorithm (CS). In this model, the Chaotic Salp Swarm 
Algorithm (CSSA) is embedded in cascade with CS to tune 
the best solution found after each iteration of CS. The goal 
of the incorporation is to enhance the local search by 
exploiting the most promising regions located by CS. In the 
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hybrid model, CS serves as a global search algorithm 
through the large steps provided by the well-known Lévy 
flight model. This way, it is expected that the accuracy of 
the equivalent model will be improved and a more precise 
model can be attained. 

Moreover, it goes without saying that the identified 
parameters depend on the disturbance used to set the 
transient behavior, which makes these parameters only 
valid to those disturbances with a similar impact. Under 
such conditions, the reduced system and the original one 
may not be consistent dynamically anymore. In fact, there 
is room for improvement here too. For example with regard 
to the parameter dependence, utilizing extra scenarios 
(disturbances) with different impacts on the system should 
prevent the dependence of the model’s parameters on a 
particular event. 

The remaining part of the paper proceeds as follows: 
section 2 outlines the problem formulation. Section 3 gives 
a brief review of CS and CSSA and presents the details of 
the proposed hybrid approach. Application of the proposed 
is presented in section 4. Finally, section 5 summarizes the 
principal findings and draws conclusions. 

2. EQUIVALENT MODEL STRUCTURE 
In this paper, the adopted approach is to remove all buses 

in the external system except the border buses, that is, those 
buses in the internal system linked directly to the external 
areas. At such buses, equivalents are placed to resemble the 
dynamics of the target external areas [25]. 

2.1. MACHINE MODEL 
Dynamics of the external areas are represented by virtual 

generators, which can be of any order [1]. In this paper, the 
fourth-order model of synchronous generators describing 
the transient dynamics on the d and q axes is used for 
simplicity. A common description is given as: 

. (1) 

where δ (rad/s), ω (pu) and Ωb are the rotor angular 
position, speed, and base frequency. Pm (pu) and Pe (pu) are 
the mechanical input power and the electrical output power, 
respectively. Eʹd (pu) and Eʹq (pu) are the transient voltages 
along the d-axis/q-axis. xd (pu), xq (pu), xʹd (pu) and xʹq (pu) 
are the steady-state and transient reactances along the d-
axis/q-axis, respectively. Tʹd0 (s), Tʹq0 (s) are the open 
transient circuit time constants along the d-axis/q-axis. 
ra (pu), H (s) and D (pu) are the armature resistance, 
acceleration time constant and damping coefficient, 
respectively. id and iq are the currents along the d-axis/q-
axis and fs is the magnetic saturation function. In the time 
domain simulations, the Power System Toolbox (PST) 
verifies that the transient reactances along the d-axis and q-
axis are equal, in such case where xʹd ≠ xʹq, PST set the 

value of the quadrature reactance as xʹq = xʹd. This reduces 
the total number of parameters to be estimated for the 
virtual generator to 8 parameters given as: 

. (2) 

2.2. AUTOMATIC VOLTAGE REGULATOR 
In this paper, the generator is equipped with a simple 

exciter which is defined as the primary voltage regulator. 
Based on the exciter block diagram shown in Fig. 1, the 
parameters that need to be estimated for the excitation 
system are given as: 

. (3) 

Where Ka (pu) is the voltage regulator gain constant. 
Ta (s), Tb (s) and Tc (s) are the time constants for the voltage 
regulator and the transient gain reductions, respectively. 
Vrmin (pu) and Vrmax (pu) are the minimum and the 
maximum voltage regulator outputs, respectively. 

Notice that, the 4th order model of synchronous 
generators with a simple exciter is used as an equivalent to 
the group of generators in the ES. From the equations 
above, it can be seen that there is a total of 12 parameters to 
be estimated. The overall decision variables for the ith 
equivalent model are given as: α={ra, xd, xq, xʹd, Tʹd0, Tʹq0, 
H, D, Ka, Ta, Tb, Tc}. These parameters are to be estimated 
using the optimal approach that will be explained section 3. 

2.3. STEADY STATE PRESERVATION 
As illustrated in Fig. 2, the steady-state operating 

conditions must be preserved. This can be done using a load 
flow study, where the complex power injected by the 
virtual generators at border buses can be calculated. Hence, 
the nodal balance equation for the ith border bus yields [25]. 

. (4) 

where K is the set of nodes connected directly to the ith 
border bus, Pik is the active power flow through the 
transmission line connecting buses i and k. PGi and PLi are 
the produced and consumed powers at the ith border bus, 
respectively. The voltage at each border bus is set to the 
value calculated in the unreduced system. Therefore, the 
complex power flows from the original and equivalent 
system are precisely matched. 

2.4. PARAMETERS IDENTIFICATION 
The aim of a dynamic equivalent program is to reduce 

the complexity of external areas by reducing the amount of 
DAEs that govern the model’s dynamic behavior. After the 
reduction, the responses of the reduced system must fit the 
original system responses when disturbances (i.e., 

 
Fig. 1 – Block diagram of the equivalent exciter. 
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perturbation of any kind) take place in the internal system. 
Using the original system responses as a reference, 
parameters of the equivalent are identified by comparing 
the reference signals with the same signals obtained from 
the time domain simulations in the reduced system. In this 
paper, active and reactive power responses of those 
generators in the internal system are set as reference 
signals. Mathematically, the objective function by which 
the optimal set of parameters α* are obtained is formulated 
as follows: 

, (5) 

, (6) 

where PG
orig and QG

orig are the active and reactive powers of 
the internal system generators in the original system at 
different instants. PG

red and QG
red are the same variables 

obtain from the reduced system in the same instants. NK, NG 
and np are the total number of time samples for the 
transient, the total number of generators in the study system 
and the total number of disturbances, respectively. tk is the 
kth time sample. ρj is the weighting factor of the jth 
disturbance. In this study, ρj=1⁄np for all disturbances. The 
objective function in (5) is subjected to the side constraint: 

, (7) 

where αi
min and αi

max are the minimum and maximum values of 
the ith parameter selected based on the values provided in [27]. 

Identification of the adequate vector parameters α* is 
particularly valuable when attempting to build an 
equivalent to the external system. However, due to the non-
convex landscape and non-linearity of the power system 
dynamics, the parameter identification in (5) appears to be a 
complex multimodal optimization problem that requires a 
robust optimization technique. In this regard, the next 
section presents the details of the proposed hybrid 
algorithm used to carry the identification. 

3. BRIEF OVERVIEW OF CS AND CSSA 
ALGORITHMS 

Metaheuristic algorithms have been used extremely by 
many researchers in the field of optimization due to their 

ability to escape the local minima [28,29]. These algorithms 
are considered global optimization techniques that use a 
trade-off between exploitation and exploration in order to 
ensure that the global optimality is achievable [30]. 
Nevertheless, these algorithms have their own drawbacks. 
Therefore, hybridization of different metaheuristics 
received considerable interest as it combines the merits of 
at least two algorithms to improve the overall search 
efficiency [31,32]. In this section, the two-parent 
algorithms CS and CSSA are introduced to set up the 
appropriate background for the hybrid method. 

3.1. CUCKOO SEARCH ALGORITHM (CS) 
The Cuckoo Search (CS) is a population-based algorithm 

inspired by the strange behavior of some cuckoo species. It 
is a metaheuristic search algorithm that generally explores 
the search space using the Lévy step [33, 34]. Cuckoo birds 
have a peculiar reproduction strategy that involves the 
female laying her fertilized eggs in the nest of other species 
so that a suitable host will unwittingly raise her offspring. 
As a consequence, if the host bird discovers the alien eggs 
he will either throw the eggs away or simply abandon the 
nest and build a new one elsewhere. Iteratively, 
replacement of the nest may lead to improve the quality of 
the solution over time, achieving finally a very good 
solution for the studied problem. 

In order to get the simplest model of the CS algorithm, 
the following idealized rules are developed: 
1. Each cuckoo lays one egg once at a time and allows it 

to incubate in a randomly chosen nest. 
2. The nests with high quality of eggs (i.e., solutions) are 

maintained until the next generation. 
3. The number of available bird nests n is fixed, and the 

possibility of discovering a deposited egg by the nest’s 
owner is denoted by pa∈[0,1]. 

Based on the hypotheses above, and in an environment of 
n cuckoos, the nest seeking behavior of ith cuckoo obeys the 
Lévy flight model. The path and the location are updated 
using the formula below: 

. (8) 

Where Posi
t+1 and Posi

t represent the new and current 
locations of the ith nest, respectively. β>0 is the step size 
constant, whose value is usually taken equal to 0.01 [33]. 
Lévy(γ) is a random walk through the Lévy flight model 
[35]. And point-to-point multiplication is denoted by ⊕. 

The Lévy flight in (8) denotes the global explorative 
random walk in which the next location only depends on 
the current location. The steps are defined in terms of the 

 
Fig. 2 – Dynamic equivalent model structure: From the detailed to the simplified. 
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step-lengths, which have a certain probability distribution 
(i.e., the Lévy distribution given in (9)). 

. (9) 

This has an infinite mean with infinite variance. Now, the 
consecutive jumps/steps of cuckoos basically form a 
random walk procedure which obeys a power-law step-
length distribution with a heavy tail. Pseudo code of the 
Cuckoo Search (CS) algorithm is granted in Fig. 3. 

 
Set the host nest size n, the discovering probability pa and 
the maximum number of generation Maxitr. 

for i=1:n do 
Initialize randomly population of n host Posi

t  
Evaluate the fitness of each nest f(Posi

t) 
end for 
While t < Maxitr do 
Generate new solutions (cuckoos) Posi

t+1 randomly via 
Lévy flight using (8) 

Evaluate the fitness of the solutions f(Posi
t+1) 

Pick randomly a nest Posj, among n solutions 
if f(Posi) < f(Posj) then 

Replace the solution Posj by the solution Posi 
end if 

Abandon a portion pa of worse nests and build new ones 
at new locations using Lévy flight 

Keep the best solutions (nests with quality solutions) 
Sort the solution and find the current best 
Set t=t+1. {Iteration counter increasing} 
end while  

Save the best solution as the optimal solution. 
Fig. 3 – Pseudo code of the CS algorithm. 

3.2. CHAOTIC SALP SWARM ALGORITHM (CSSA) 
The sea salp is a barrel-shaped, transparent tunicate that 

moves by the act of jet propulsion. To initiate movement, 
sea salps create unidirectional water flow by taking water at 
one end and expelling it at the other end. In the ocean, these 
gelatinous oddities usually travel in colonies in the form of 
large chains called “salp chains”. The swarm includes one 
leader whose primary role is to guide the swarm to the best 
location of food by searching the most promising regions. 
For this reason, the leader is located at the head of the 
chain. The remainder salps are followers, and as their name 
indicated their role is to follow each other and their leader. 
Inspired by the swarming mechanism, Mirjalili et al. in 
2017 proposed a novel optimization algorithm under the 
name of Salp Swarm Algorithm (SSA) [36]. 

Given the environment of n salps, and based on the food-
seeking behavior, the ith salp updates its position using the 
formulas below: 

1. The leader salp changes position with respect to 
the food source as: 

. (10) 

Where Posj
1 and Foodj are the position of the leader salp 

and its target food source in the jth dimension; lbj and ubj 
are the lower bound and the upper bound in the jth 
dimension, respectively. r2 and r3 are two numbers 

randomly generated in the interval [0,1]. 
The coefficient r1 is viewed as the main controlling 

parameter of SSA because it maintains equilibrium between 
exploration and exploitation. The coefficient r1 is calculated as: 

. 
(11) 

2. The follower salps change position based on 
Newton’s law of motion as: 

. (12) 

where i ≥ 2, Posj
i is the position in the jth dimension of the ith 

follower salp, and v0 is the initial speed taken as 0. t is time 
(in optimization giving by an iteration), therefore, ∆t = 1. 

From the assumptions above, the eq. (12) that governs 
the followers’ movements can be simplified to: 

. (13) 

In [37] it was demonstrated that employing chaotic maps 
to replace random variables in the original SSA, 
performances of the algorithm have improved. In this 
paper, and similar to the modification introduced in [37], r2 
is updated using the logistic chaotic map with the initial 
value of 0.7. The pseudo code of the Chaotic Salp Swarm 
Algorithm (CSSA) is granted in Fig. 4. 

 
Set the number of salps n, the maximum number of 
generation Maxitr, and the search boundary vectors ub and 
lb. 
Initialize randomly population of n salps Pos 
Evaluate the fitness of each salp f(Posi) 
Update the leader salp Food=min(Posi) 

While t < Maxitr do 
Update r1 using (11), and r2 using the logistic map 
for i=1:n do 

if (i==1) then 
Update the position of the leader salp using (10) 

else 
Update the position of the follower salp using (13) 

end if 
end for 

Update the leader salp Food=min(Posi) 
Set t=t+1. {Iteration counter increasing} 
end while. 

Fig. 4 – Pseudo code of the CSSA algorithm. 
 

3.3. HYBRID APPROACH 
CS is a recent population-based algorithm that shows 

superior results in many optimization problems. The 
original algorithm explores the search space using large 
steps via Lévy flight. These long-distance movements help 
search agents (cuckoos) to escape from the local optimum. 
Such merits clearly indicate that CS has good global 
exploration capabilities. Meanwhile, CSSA has good local 
exploitation capabilities using the control parameter 
coefficient r1 and the dependent movements of followers on 
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each other. Combining the merits of the aforementioned 
algorithms, this paper proposes a Low-Level Teamwork 
Hybrid (LTH) based on CS and CSSA algorithms. In LTH, 
CSSA algorithm is embedded in cascade with CS to tune 
the best solution found after each iteration of CS. This 
approach is named CS-CSSA. In which the goal of CSSA is 
to enhance the local search by exploiting the most 
promising regions after a full iteration of CS. Pseudo code 
of CS-CSSA is provided in Fig. 5. 

 
Step 1: Define the control parameters of CS and CSSA. 
Step 2: Initialize randomly population of n agent. 
Step 3: Execute one iteration of CS. 
Step 4: Execute one iteration of CSSA to fine-tune the 
results obtained by CS. 
Step 5: Repeat steps 3–4 until the stop criteria are satisfied. 
Step 6: Save the final solution as the optimal solution. 

Fig. 5 – Pseudo code of the CS-CSSA algorithm. 

4. SIMULATION RESULTS 
All of the following experiments were completed on 

Lenovo ThinkPad T470 personal computer, running on 
Intel® CoreTM i7-7500U CPU, 2.70 GHz processing speed, 
and installed memory (RAM) of 8 GB. The main procedure 
of the proposed algorithm is to generate candidate 
parameters to the equivalent model. Using these potential 
parameters, transient stability studies are carried out for all 
disturbances using PST toolbox to evaluate the objective 
function in (5). These steps are iteratively repeated until the 
maximum number of generations is exceeded. It is 
worthwhile to mention that CS and CSSA equally shared 
the total number of iterations. 

To validate the developed program, two standard power 
systems used by most authors who have dealt with this 
problem were tested. The tested networks are the 39-bus 
system commonly known as the New England (NE) and the 
68-bus system commonly known as the Northeast Power 
Coordinating Council (NPCC). 

4.1. TEST SYSTEM 
The NE system in Fig. .6 consists of 10 generators, 46  

 
Fig. 6 – New England system. 

transmission lines, and 12 transformers with a total capacity 
of (PG-total = 6.19 GW, QG-total= 2.28 GVAr). The area in the 
blue square represents the system to be reduced, while the 
rest is the system of interest. As can be seen, the equivalent 
generator should be placed at the border bus (i.e., bus 16) and 
linked to the study area through the two tie lines 16-15 and 
16-17. Two disturbances (three-phase faults) at different 
locations in the internal system are used (i.e., bus 7 and bus 
27), each disturbance is provoked at t=0 and lasts 6 cycles 
before the protection disconnects the associated transmission 
line to eliminate the fault. For each scenario, system 
responses are observed in a closed interval of 3 seconds. 

The NPCC system in Fig. 7 consists of 16 generators, 86 
transmission lines, and 20 transformers with an installed 
capacity of (PG-total = 18.408 GW, QG-total = 2.79 GVAr). 
The area in the blue square represents the system to be 
reduced, while the rest is the system of interest. As can be 
seen, there should be two equivalent generators placed at 
border buses, those are, bus 1 and bus 9, respectively. The 
equivalents are linked to the study area through the 
transmission lines 1-2, 1-27 and 9-8. Two disturbances 
(three-phase faults) at different locations in the internal 
system are used (i.e., bus 14 and bus 28), each disturbance 
is triggered at t = 0 and lasts 6 cycles before the protection 

 
Fig. 7 – Northeast power coordinating council system. 
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removes the associated transmission line to eliminate the 
fault. For each scenario, system responses are observed in a 
closed interval of 3 seconds. 

4.2. RESULTS AND DISCUSSION 
Like any metaheuristic algorithm, it is essential to 

determine adequate control parameter values whose choice 
often depends on the studied problem. In this paper, and after 
several preliminary tests, the control parameters of the 
proposed CS-CSSA algorithm were set as given in Table 1. 
In order to obtain the most representative results, the 
estimated values of the equivalent models granted in Table 2 
are the average result computed from 30 independent runs. 

Table 1 
CS-CSSA Control Parameters 

Parameters 39-bus 68-bus 
Number of Cuckoos/Salps 20/20 25/25 

Maximum iteration (CS/CSSA) 50/50 50/50 
Discovery Rate 0.275 0.275 

Table 2 
Estimated parameters for the equivalent generator 
 39-bus 68-bus 

Parameters Geq1 Geq1 Geq2 
ra 0.0022 0.0037 0.0050 
xd 2.0880 1.3764 2.2925 
xq 2.2549 1.0017 1.0000 
xʹd 0.3597 0.1501 0.1513 
Tʹd0 4.2573 7.1597 3.6060 
Tʹq0 1.5538 2.0000 1.9921 
H 13.7683 334.8433 62.3755 
D 1.1733 1.0466 0.7680 
Ka 31.7567 12.0109 127.4033 
Ta 0.4640 5.91e-07 6.68e-07 
Tb 0.3286 0.0400 13.4820 
Tc 0 0.8725 1.4747 

To confirm the ability of the reduced model to preserve 
the main dynamic responses of the original system, 
different scenarios (i.e., three-phase faults) differ from 
those applied for the estimation were used. Then, transient 
responses are observed for 10 seconds once using the 
original system and once using the reduced system 
including the optimized equivalents. The goal is to 
demonstrate that the reduced system responses are 
consistent with those measured from the unreduced system.  

For this reason, the formula in eq. (14) is employed to 
compare the main signals: 

, (14) 

where Yi
orig and Yi

red are the same signals measured from 
the original system and equivalent system, respectively 
when both systems are subjected to the same disturbance. tk 
is the kth sample in time, and N denotes the number of 
samples. The criteria in (14) is used to evaluate the 
performance of the equivalent. That is, how well the 
equivalent fits the original system dynamically. Using (14), 
Tables 3 and 4 summarize the accuracy evaluation for the 
two systems under different faults. 

For the 39-bus system, Table 3 summarizes the accuracy 
evaluation for the six generators in the internal system 
following three-phase faults near buses 3, 8, 10 and 14, 

respectively. The largest error is obtained for the fault at 
bus 3; this error is mainly contributed by generator 10. This 
is due to the fact that generator 10 has the largest power 
output. However, the average value for the fault at bus 3 
indicates that the equivalent generator is able to predict the 
dynamics of the original system even for disturbances 
different from those used in the estimation. 

Table 3 
Accuracy evaluation of the (NE) system 

Fault location Bus 3 Bus 8 Bus 10 Bus 14 

Max Error 2.0212 1.1382 1.3291 1.6417 
Pe 

Avg Error 0.3514 0.2250 0.3425 0.3067 
Max Error 0.5454 0.3934 0.3313 0.4525 

Qe 
Avg Error 0.2113 0.1593 0.1351 0.1832 

Table 4 
Accuracy evaluation of the (NPCC) system 

Fault location Bus 3 Bus 13 Bus 16 Bus 27 

Max Error 0.0533 0.0588 0.0858 0.0519 
Pe 

Avg Error 0.0425 0.0384 0.0569 0.0402 
Max Error 0.0361 0.0265 0.0412 0.0347 

Qe 
Avg Error 0.0237 0.0201 0.0335 0.0229 

For the 68-bus system, the overall accuracy measurement 
results for the nine generators in the internal system 
following three-phase fault near buses 3, 13, 16 and 27 are 
presented in Table 4. In this system, the largest error is 
obtained for the fault at bus 16. 

Figures 10 and 11 report time-domain responses of the 
dynamic equivalent and the original system for some 
representative signals under three-phase faults. Evaluation 
of the resulting plots for the NE system in Fig. 10 illustrates 
that the overall tendency of the generators in the internal 
system is preserved. By analyzing Fig. 11, we can clearly 
see that the estimated equivalent is able to maintain the 
original system behavior also for faults different from the 
scenarios used in the estimation phase. 

4.3. COMPARATIVE STUDY 
In this section, the proposed CS-CSSA algorithm will be 

checked from different aspects on the 39 and 68 test systems. 
Likewise, the algorithm will be compared to other 
metaheuristics in terms of average and best solution values 
obtained by minimizing the objective function. In order to 
have a fair comparison among the algorithms, all executions 
are performed under the same conditions (i.e. the same 
number of populations, iterations and the same boundary 
limits). The results reported below are computed over thirty 
independent runs. The corresponding control parameters of 
the CS-CCSA are defined according to Table 1. 

The average execution time of the original CS is 8040 s 
for the 39-bus and 17031 s for the 68-bus system. On the 
other hand, the proposed algorithm tremendously reduces 
the computation efforts with an average execution time of 
5728 s and 9948 s, respectively. This is a time reduction of 
28.75 % and 41.58 %, respectively. 

Moreover, the optimization is performed by comparing 
the CS-CSSA approach against other metaheuristic 
algorithms. The selected algorithms for the comparative 
study are the original Cuckoo Search (CS) [33], Salp 
Swarm Algorithm (SSA) [37], Sine Cosine Algorithm 
(SCA) [38] and Harris Hawks Optimization (HHO) [39]. These 
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metaheuristic algorithms have shown excellent performance 
when applied to various types of problems, including power 
system applications. Therefore, they would serve as a good 
reference to evaluate the capability of the proposed algorithm. 

The convergence characteristics showing the objective 
function versus the number of iterations for the compared 
algorithms are plotted in Fig. 12 and Fig. 13 As can be seen, the 
proposed algorithm exhibits a better convergence compared to 
other metaheuristics. This is due to the incorporation of CSSA in 
the original algorithm. After each execution of CS, the search 
process is shifted to the fine tuning to speed up the convergence 
for the global optimum. Therefore, the CS-CSSA finds an 
optimum more accurately and precisely. 

5. CONCLUSIONS 
Dynamic equivalents based on measurement could play a 

vital role regardless of the unknown configuration and 
parameters of the external systems. In this paper, using only 
the post fault measurement, parameters of the equivalent 
were estimated by an optimal procedure.  

 
Fig. 12 – Convergence characteristics of the 39-bus system obtained by 

different algorithms. 

A hybrid algorithm based on cuckoo search and the 
chaotic salp swarm algorithm was proposed. Simulation 
results were carried on 39-bus and 68 bus systems and the 
ability of the proposed hybrid algorithm to estimate 
parameters to the equivalent was confirmed through 

accuracy tests. Moreover, evaluation of the time domain 
plots proved that the equivalent generator is able to predict 
the dynamics of the original system even for disturbances 
different from the ones used in the estimation. A 
comparative study of the CS-CSSA approach against 
recently proposed metaheuristics proved the superiority of 
the proposed algorithm. 

 
Fig. 13 – Convergence characteristics of the 68-bus system obtained by 

different algorithms. 
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