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Problems regarding the electromagnetic interferences between high voltage power lines 
and underground metallic pipelines are studied. To evaluate the magnetic vector 
potential for different constructive geometries of a specific interference problem, a 
neural networks based artificial intelligence technique is implemented. To find the 
optimal solution, different neural network architectures are tested. Results gained with 
neural networks are compared to finite element solutions considered as standard ones. 

1. INTRODUCTION 

In many cases to reduce construction costs and due to government 
regulations, which restrict access to new right-of-ways, supply utilities (gas, water 
or oil) are forced to share for long distances the same distribution corridors with 
high voltage power transmission lines (HVPL) or a.c. railway systems.  

Taking into account this right of way the gas, water or oil supply 
underground metallic pipelines (MP) are exposed to induced a.c. currents and 
voltages. In case of one or two phase faults on HVPL, the induced a.c.voltage in 
unmitigated MP can reach thousands of volts. This could be very dangerous on 
both the operating personal and structural integrity of the pipeline, due to corrosive 
effects [1]. 

Solving problems that involve power systems electromagnetic fields, 
electromagnetic interference, and grounding tend to be a complex issue, because 
many interrelations between them exist. Almost any attempt to simulate problems 
involving current circulating outside phase conductors or induced currents by 
inductive effects (in soil, neutral ground wires, metallic pipelines) should take into 
account many aspects regarding the electromagnetic interferences and 
electromagnetic fields. To solve the differential equations which describe these 
complex interference problems it assumes in most of the cases the use of specific 
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numerical methods, like finite element method (FEM), which transforms the 
electromagnetic interference problem into a numerical one [2]. 

Although FEM yielded solutions are very accurate, regarding to the problem 
complexity, the computing time of this method increases with the geometry, its 
mesh, material characteristics and requested evaluation parameters. The study of 
electromagnetic interference between HVPL and MP with FEM for different 
system configurations requires expensive computing time because, for each new 
problem geometry taken under consideration FEM involves a new mesh and  new 
calculations. Therefore, a scaling method of the results from one configuration case 
to another may be of interest if it provides less computing time. To decrease the 
computing time, needed to study new problem geometries, an artificial intelligence 
based method, a neural network (NN) solution, is proposed by the authors. To 
identify the optimal neural network solution different architectures were 
implemented and tested. Obtained results were compared to FEM solutions, 
considered standard ones. 

2. ELECTROMAGNETIC INTERFERENCE PROBLEM 

The authors purpose is to evaluate the magnetic vector potential (MVP), 
induced on the MP for an electromagnetic interference problem presented in [4, 5]. 
The problem, presented in Fig. 1, refers to an underground metallic gas pipeline 
which shares for 25 km the same distribution corridor with a 145 kV HVPL at 50 
Hz frequency. 

 
Fig. 1 – Top view of the parallel exposure. 

It is assumed that a phase to ground fault occurs at point B, far away outside 
the common HVPL–MP distribution corridor. The earth current associated with 
this fault has a negligible action upon the buried pipeline. This fact allows us to 
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assume only an inductive interference caused by the flowing fault current in the 
section where the HVPL runs parallel to the buried gas pipeline. 

The HVPL consists of two steel reinforced aluminium conductors per phase. 
Sky wire conductors have a 4 mm radius, the gas pipeline has a 0.195 m inner 
radius, a 0.2 m outer radius and a 0.1 m coating radius. The characteristics of the 
materials in this configuration have the following properties: the soil is assumed to 
be homogeneous; MP and sky wires have an σ = 7.0E+05 S/m conductivity and a 
µr = 250 relative permeability [4]. 

End effects are neglected, leading to a two dimensional (2D) problem which 
depends on the separation distance d between HVPL and MP, on the soil resistivity 
ρ, on the x and y coordinates of the point where the magnetic vector potential is 
desired to be determined. Figure 2 shows the studied configuration cross section: 

 
Fig. 2 – Cross section of the system taken under investigation. 

Thus, taking into account the cross section of the studied problem, the z  
direction component of the magnetic vector potential Az and of the total current 
density Jz are described by the following system of equations:  
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where σ is the conductivity, ω is the angular frequency, µ0 is the permeability of 
the free space (µ0 = 4·π·10-7 H/m), µr is the relative permeability of the 
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environment, Jsz is the source current density in the z direction and Ii is the imposed 
current on conductor i of Si cross section. 

To solve the system (1) for a given problem geometry (HVPL-MP separation 
distance, soil resistivity) with FEM, it takes from 20 to 50 minutes depending on 
mesh discretization. This computing time has to be repeated for each problem 
geometry (soil resistivity/separation distance) that we want to study. 

In order to eliminate the computational time needed to evaluate MVP values 
for each problem geometry, the authors implemented a neural network solution to 
scale the MVP values for a set of known problem geometries. 

3. NEURAL NETWORK CONCEPTS 

Neural Networks (NN) belong to a group of artificial intelligence techniques 
(AI), for data analysis that do not resemble with other classical analysis techniques. 
AI is learning about the chosen subject from the data provided to them, rather than 
being defined by user. NN get their knowledge by detecting relationships between 
input and output data [6]. 

A. Structure of an artificial neuron 

The most complex neural network in nature is the human brain. This inspired 
scientists in designing artificial neural networks. Like in nature, the major building 
block of any neural network is the artificial neuron. 

 
Fig. 3 – Structure of a: a) biological neuron; b) artificial neuron. 

The artificial neuron like the biological one (Fig. 3) is a system which has a 
variable number of inputs mkuk ,1  , =  (dendrites) and only one output y (axon). 
The inputs of the artificial neurons are multiplied by some kw  parameters, called 
weighs and added to each other. The weighted inputs sum is added to a parameter 
b  called bias [7]. Then the last sum, denoted by h , is used as an argument of the 
function which produces the artificial neurons output. This function is called 
transfer function and can take various forms, specific to each neuron. This is the 
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equivalent to nucleus of the biological neuron. Thus the artificial neurons output is 
described by the following relation: 

 ( ),ay f h=  where ( )∑
=

+⋅=
m

k
kk bwuh
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B. Neural network structure 

A group of artificial neurons, which work in parallel, their inputs and outputs 
have the same destination from a layer. Each neural network must contain at least 
one layer of neurons, but can join as many as someone projects. The layer 
gathering the neurons which give the neural networks output is called output layer.  
Layers which contain the neurons interposed between the global inputs of the 
neural network and the inputs of the neurons from the output layer are called 
hidden layers [8]. Usually, there are used feed-forward NN which contain a hidden 
layer and an output layer. Figure 4 presents the simplified block diagram of a two 
layer feed-forward neural network. 

 
Fig. 4 – Feed-forward neural network. 

From this block diagram, it can be deduced the relation which defines a feed-
forward NN outputs, if we know its inputs mkuk ,1  , = . The hidden layer neurons 
output is described by the following relation: 
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So, the final outputs of a feed-forward neural network will be given by: 
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C. Training a neural network 

Training of a neural network is the process in which it is taught to provide the 
desired output values.  

 

 

Fig. 5 – Feed-forward neural network. 

According to the Fig. 5, NN weights are adjusted depending on the error 
between the actual NN outputs and the desired ones. This error is evaluated by a 
performance function. In most of the cases the mean square error is used as 
performance function:  
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4. NEURAL NETWORK IMPLEMENTATION 

In order to determine precisely the magnetic vector potential, in each point of 
the studied domain, the amplitude and the phase of MVP has to be evaluated. To 
obtain more accurate results, considering the different variation range of these to 
values: 10-6 ÷10-4 [Wb/m] for amplitude, and respectively –180°÷180° for phase, 
the authors chose to implement two different neural networks – one for amplitude 
and one for phase – instead of implementing a single NN which provide both 
amplitude and phase. These two NN have as input values the parameters which 
describe the presented 2D problem: 

• d – separation distance between HVPL and MP (between 10 m and 2000 m); 
• ρ – the resistivity of the soil (between 30 Ω·m and 1000 Ω·m); 
• x, y – coordinates of the point where the MVP will be evaluated. 

To implement the proposed two NN it was used the Neural Networks toolbox 
from MatLab software. This software was chosen because it enables the creation of 
almost all types of NN from perceptrons (single layer networks used for 
classification) to more complex architectures of feed-forward or recurrent 
networks. In order to create a feed-forward neural network in MatLab the 
following function has to be used: 
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net = newff(P,T,S,TF,BTF,BLF,PF), (6) 

where:  
• P – is a RxQ1 matrix of Q1 representative R-element input vectors; 
• T – is a SNxQ2 matrix of Q2 representative SN-element target vectors. 
• S – is a vector representing the number of neurons in each hidden layer; 
• TF – is a vector representing the transfer function used for each layer; 
• BTF – is the back propagation function used to train the NN; 
• BLF – is the weight/bias learning function; 
• PF – is performance evaluation function. 

In order to find the optimal NN solutions to evaluate the amplitude and phase 
of MVP different NN architectures were implemented. A basic feed-forward NN 
architecture with one hidden layer and one output layer has been chosen. The 
number of neurons in the hidden layer was varied from 5 to 30 with a step of 5 
neurons. The transfer function of the output layer was set to purelin (the linear 
transfer function) and the transfer function on the hidden layer was varied between 
tansig (the hyperbolic tangent sigmoid transfer function), logsig (the logarithmic 
sigmoid transfer function and purelin. Also performance evaluation function was 
varied between mse (mean square error), msereg (mean square error with 
regularization performance) and sse (sum squared error).  

To train the different NN architectures the Levenberg-Marquardt training 
method and the descendent gradient with momentum weight learning rule has been 
implemented. As training data base a set of MVP values evaluated with FEM and 
presented in [4] were used. These MVP values were calculated in different points 
up to 15 different problem geometries (soil resistivity/separation distance) 
obtaining a set of 37 input/output pairs used to train the proposed NN. Table 1 
presents some of the training data. 

Table 1 

Input/Output pairs used to train the proposed NN 

MVP 

No d  
[m] 

x  
[m] 

y  
[m] 

ρ  
[Ωm] 

Ampl.  
10-3 

[Wb/m] 

Phase  
[º] 

1   70   70 -15 30 36.1 -22.8 
5 800 818.25 -13.5 30 3.88 -82.61 
9 400 384.81 -7.82 70 17.2 -44.46 
14   70   40  0 100 55.9 -18.53 
18 1000 1022.5  0 100 7.23 -67.27 
23 300 290.26 -15.8 500 35.5 -26.74 
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28  700   670 -22.5 700   26 -33.74 
30  150   150.55 -16.99 900   53 -19.7 
33 1500 1499.1 -17.48 900   15.6 -46.35 
37 2000 2030 -5 1000   12.2 -52.73 

 
To obtain a higher accuracy for the results given by the two neural networks, 

the training database presented in [4] was multiplied twenty times. The training 
process for both amplitude and phase neural networks took from 10 seconds to 1 
minutes, depending on NN architecture. 

Once the NN are trained they can provide automatically the amplitude, 
respectively the phase of MVP for any combination of input data. To obtain the 
output value, given by an implemented NN, the following MatLab function has be 
used: 

           sim(NET,X,T), (7) 

where: NET – is the implemented neural network; X – is a R × Q1 matrix of Q1 
representative R-element input vectors; T – is a SN × Q1 matrix of Q1 
representative SN-element target vectors. 

In order to identify the optimal NN architecture for both amplitude and phase, 
and see how these react in the presence of totally new problem geometries, the 
implemented NN were tested by providing as input values the database presented 
in Table 2. The obtained results were compared with MVP values obtained with 
FEM calculation. 

Table 2 

Input/Output pairs used to train the proposed NN 

MVP 

No d  
[m] 

x  
[m] 

y  
[m] 

ρ 
[Ωm] 

Ampl.  
10-3 

[Wb/m] 

Phase  
[º] 

1   70    40 -15 100   53.8 -19.34 
2   70     81.66 -27.03  30   32.90 -25.57 
3  400   392.25 -25.56  70   16.7 -46.05 
4  300   281.66 -27.03 500   37.5 -25.93 
5  700   690.36 -15.80 700   25.6 -34.07 
6 1000 1007.50    0  70    5.68 -72.98 
7 1000 1015 -30 100    7.16 -69.22 
8 1500 1524.77 -6.93 900   15.40 -46.56 

 
After analysing maximum and average percentage error, between the obtained 

results as output values of the implemented NNs and results obtained with FEM 
calculation for both testing and training data sets, the authors had chosen the 
optimal NN architectures.  
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In case of the NN which calculates the amplitude, the optimal NN 
architecture it would be a feed-forward NN with 10 neurons and tansig transfer 
function on the hidden layer, respectively a mean square error function used for 
performance evaluation. This optimal NN architecture register a maximum error of 
1.72% and average error of 0.71% for the testing data set; all the other tested NN 
architectures percentage average errors are grater than 2%. Figure 6 presents the 
absolute deviation between the results obtained with the optimal NN architecture 
and those calculated with FEM for the testing data set. 

 
Fig. 6 – Absolute deviation for optimal amplitude NN. 

In case of NN which calculates the phase, the optimal architecture it would be 
a feed-forward NN with 5 neurons and logsig transfer function on the hidden layer, 
respectively a sum square error function used for performance evaluation. This 
optimal NN architecture presents a maximum error of 5.47% and average error of 
1.54% for the testing data set; all the other tested NN architectures percentage 
maximum error are grater than 10%. Figure 7 presents the absolute deviation 
between the results obtained with the optimal NN architecture and those calculated 
with FEM for the testing data set. 

 
Fig. 7 – Absolute deviation for optimal phase NN. 
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5. CONCLUSIONS 

The authors have proposed the use of an artificial intelligence technique to 
scale the MVP values for any geometrical configuration for a specific 
electromagnetic interference problem, from a set of known problem geometries, in 
order to reduce computation time for new problem configurations.From figure 6 
and 7 it can be observed that absolute deviation of the solutions provided by the 
identified optimal NN architectures, are almost insignificant for both the amplitude 
and phase NN, to those provided by FEM. The method using neural networks, 
implemented for the MPV evaluation for different geometrical configurations, is a 
very effective one, especially if we take into account the fact that the solutions 
provided by neural networks are obtained instantaneously and we do not have to 
pay expansive calculus as with FEM. 
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