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We propose a simple, iterative procedure for the frequency estimation of a real sinusoid 
corrupted by additive, white noise, based on a combination of a known low-complexity 
method and filtering. We obtain mean square errors close to the Cramer-Rao lower bound, 
for relatively low signal-to-noise ratios in a few iterations, with a reasonable increase in 
computation complexity. 

1. INTRODUCTION 

In many situations, a signal consisting of a single tone corrupted by additive 
white noise is available, and the frequency of the tone must be estimated. This 
problem has applications in communications, radar, sonar, measurements, adaptive 
control, speech processing etc [1], and it belongs to the wider class of spectrum 
estimation problems [2]. Both complex and real signals have been considered in 
the literature. As maximum likelihood (ML) estimators perform very well but are 
not computationally efficient [3, 4], various estimation algorithms have been 
proposed (see [5−11] for the complex case and [4, 12, 13, 14, 15] for the real case). 

The Pisarenko harmonic decomposer (PHD) [12, 13, 16, 17,], and the 
reformed Pisarenko harmonic decomposer (RPHD) [15, 18, 19] are among the 
algorithms that perform well and are computationally efficient in the real case, 
when the signal consists of a real sinusoid and an additive, white noise. The theory 
for both the above mentioned algorithms assumes a white noise. In the present 
paper we report an iterative method designed to improve the performance of the 
RPHD such that frequency error variances close to the Cramer-Rao lower bound 
(CRLB) are obtained for signal-to-noise ratios (SNR) as low as 3 dB in a few 
iterations. An iteration consists of filtering the initial data sequence with a 
frequency selective filter whose maximum of the frequency response is at the 
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frequency estimate obtained in the previous iteration and in computing a better 
frequency estimate based on the data sequence at the filter output by means of the 
RPHD. Although the noise in the filtered sequence is no more white, experiments 
show that the considered estimators perform well in this case too. 

We present the algorithm in Section 2, together with an analysis of the 
increase in the SNR due to filtering. In Section 3 we report results of computer 
experiments, while conclusions are drawn in Section 4. 

2. ITERATIVE PROCEDURE 

We consider the following signal model: 

 ( ) ( ) ( ) ( ) ( )0cos , 1,2, ,x n s n q n n q n n Nα= + = ω + ϕ + = …  (1) 

where 0>α , ),0(0 π∈ω  and ϕ are the deterministic but unknown amplitude, 
(angular) frequency and phase of the sinusoid respectively, and q(n) is a zero-mean 
Gaussian white noise of variance 2σ . 

The signal-to-noise ratio is 
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In order to estimate the frequency we propose the following procedure: we 
initialize the algorithm by using the RPHD for the calculation of an initial estimate  

0ω̂  for 0ω ; then we start iterations such that, at iteration 1≥k , we filter the initial 
data sequence with a selective filter centered at the frequency estimated at iteration 
k–1, 1ˆ −ωk , and we apply to the signal from the filter output the RPHD in order to 
calculate a new frequency estimate kω̂ . 

The purpose of filtering the data sequence is to increase the SNR. The filtered 
signal contains a colored noise component that does not fit into the theory of the 
frequency estimation algorithm we have mentioned, so that its performance has to be 
tested for this case.  

We have considered the second-order noise rejection filter with the following 
transfer function: 
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where ρ is a parameter close to unity in order to provide selectivity (but smaller, for 
stability) and, at each iteration k of the algorithm we have made 1ˆ −ω=ω kr . 
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The performance of the noise-rejection filter can be illustrated by evaluating 
the enhancement η of the SNR 
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where  SNR1=P1s/P1q  is defined at the filter output and SNR0 has been defined in 
(2) (we have denoted by P1s and P1q the signal power and noise power at the filter 
output respectively). For evaluation purposes, we consider 0ω=ωr .  
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power spectral densities of the signal and noise defined in (1) respectively, and by 
taking into account their statistical independence, we have 
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The integral in (5) is a simple application of the properties of the Dirac pulse, 
while the integral in (6) can be calculated in a straightforward way by means of the 
residuum theory. Simpler approximate expression are obtained by taking into 
account that 1, 1ρ < ρ ≅ . The above results become: 
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Finally, using (4), (7) and (8) we get 
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Equation (9) reveals an appreciable increase of the signal-to-noise ratio if we 
take into account the range of ρ ( )1, 1ρ < ρ ≅ . These noise rejection properties of 
the filter and the fact that, due to the good estimation provided by the RPHD, the 
estimated frequency does not differ significantly from the true frequency are in 
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support of an iterative procedure that consists of computing k, k = 1, 2,… by using 
the signal at the filter output, with the previous estimate k–1  substituted for the 
parameter rω  in the expression of the frequency response. The variance of the 
estimator decreases at each iteration as the estimated frequency approaches 
gradually the true frequency. These a priori arguments are confirmed by 
experimental results presented in the next section. 

3. SIMULATION RESULTS 

Computer experiments have been performed in order to evaluate the 
proposed iterative procedure. For frequency estimation, at each step of the 
algorithm we used the RPHD method [15]. The data sequence for single real, noisy 
sinusoids was generated using (1) with 2=α  and 0=ϕ . We compared the 
estimates resulted from the iterative procedure after one iteration ( 1=k ) and 5=k  
iterations, to the RPHD method (corresponding to the initialization step of the 
algorithm) and to the CRLB [20]. The parameter ρ was chosen experimentally. The 
simulation results presented below are averages of 1000 independent runs. 

The results illustrated in Figs. 1, 2 and 3 indicate the decrease of the mean 
square frequency errors with the number of iterations. After five iterations, the 
estimator performance approaches the CRLB.  

 

Fig. 1 – Mean square frequency errors versus frequency for N = 50, SNR = 10 dB, ρ = 0.98. 

fr
eq

ue
nc

y 
er

ro
r [

dB
 ra

d2 ] 

ω0/s



5 Iterative procedure for real single-tone frequency estimation  
 

 

257 

 
Fig. 2 – Mean square frequency errors versus frequency for N = 100, SNR = 3 dB, ρ = 0.95. 

In experiments corresponding to Figs. 1 and 2, relatively low signal-to-noise 
ratios were chosen in order to prove the efficiency of the noise rejection filter. The 
larger SNR for the situation in Fig. 1 with respect to the one in Fig. 2 allowed for a 
smaller number of signal samples. Generally, a larger value of the SNR allows for 
a smaller number of signal samples and a value of ρ closer to 1 for achieving good 
estimates in a low number of iterations. Note that the frequency dependency of the 
mean square error, which occurs in real sinusoid frequency estimation, tends to 
decrease with the number of iterations. Experiment illustrated in Fig. 3 show that, 
at large SNR’s, the estimator performances approaches the CRLB after one 
iteration. 

The simulation results indicate that the desired performance of the algorithm 
is achieved in a few iterations. Consequently, the additional computation complexity 
introduced by iterations does not change the order of magnitude of the complexity 
of the original estimation method. In our examples, the RPHD (used at the 
initialization of the algorithm and then at each iteration) takes 3N–4 real 
multiplications, 4N–8 real additions and 5 other operation that are usually 
implemented by ROM accesses. Additionally, each iteration involves 2N–2 real 
multiplications and 2N–3 real additions for filtering and an RPHD. Therefore, for k 
iterations, the algorithm takes (5k+3)N–6k–4 real multiplications, (6K+4)N–11k–8 
real additions and 5k+5 other operations. As shown above, a value of k = 5 is 
sufficient for achieving a good performance. 
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Fig. 3 – Mean square frequency errors versus SNR, for f = 0.3, n = 100, ρ = 0.98. 

4. CONCLUSIONS 

We have proposed an iterative algorithm for the estimation of the frequency 
of a signal consisting of a real sinusoid and an additive white noise. Starting from a 
known, single-step method (RPHD), we have used that method as a first step of the 
algorithm, then filtered the initial data sequence with a frequency selective filter 
centered on that estimate and used again that method on the filtered data in order to 
obtain the next estimate. This process has then been iterated. 

Filtering has been introduced in order to significantly improve the signal-to-
noise ratio.  Although after filtering the noise gets colored, experimental results 
show that the RPHD still provides good frequency estimates. 

Experiments indicate that this iterated procedure leads to an estimated 
frequency with a mean square error close to the CRLB, significantly improving the 
initial, first-step estimate in just a few iterations (below ten, tipically five). As the 
number of iterations is low, the asymptotic complexity of the algorithm is the same 
as in the initial method. 

Received on July 14, 2008 

fr
eq

ue
nc

y 
er

ro
r [

dB
 ra

d2 ] 

SNR [dB]



7 Iterative procedure for real single-tone frequency estimation  
 

 

259 

REFERENCES 

 
1. P. Stoica, R. L. Moses, Introduction to Spectral Analysis, Prentice Hall, New Jersey, 1997. 
2. S. M. Kay and S. L. Marple Jr., Spectrum Analysis – A Modern Perpective, Proc. of the IEEE, 69, 

11, pp. 1360-1419, 1981. 
3. D. C. Rife and R. R. Boorstyn, Single-Tone Parameter Estimation from Discrete-Time 

Observations, IEEE Trans. Inf. Theory, 20, 5, pp. 591-598, 1974. 
4. R. J. Kenefic and A. H. Nuttall, Maximum Likelihood Estimation of the Parameters of a Tone 

Using Real Discrete Data, IEEE J. Oceanic Eng., OE-12, 1, pp. 279-280, 1987. 
5. S. A. Tretter, Estimating the Frequency of a Noisy Sinusoid by Linear Regression, IEEE Trans. Inf. 

Theory, 31, 6, pp. 832-835, 1985. 
6. S. A. Kay, A Fast and Accurate Single Frequency Estimator, IEEE Trans. ASSP, 37, 12, pp. 1987-

1989, 1989. 
7. M. P. Fitz, Further Results in the Fast Estimation of a Single Frequency, IEEE Trans. Comm., 42, 

2/3/4, pp. 862-864, 1994. 
8. M. Luise, R. Reggiannini, Carrier Frequency Recovery in All-Digital Modems for Burst-Mode 

Transmissions, IEEE Trans. Comm., 43, 2/3/4, pp. 1169-1178, 1995. 
9. D. Kim, M. J. Narashima, An Improved Single Frequency Estimator, IEEE Signal Processing 

Letters, 3, 7, pp. 212-214, 1996. 
10. E. Rosnes, A. Vahlin, Frequency Estimation of a Complex Sinusoid Using a Generalized Kay 

Estimator, IEEE Trans. Comm., 54, 3, pp. 407-415, 2006. 
11. H. Fu, P. Y. Kam, MAP/ML Estimation of the Frequency and Phase of a single Sinusoid in Noise, 

IEEE Trans. Signal Processing., 55, 3, pp. 834-845, 2007. 
12. H. Sakai, Statistical Analysis of Pisarenko's Method for Sinusoidal Frequency Estimation, IEEE 

Trans. ASSP, 32, 1, pp. 95-101, 1984. 
13. K. W. Chan and H. C. So, An Exact Analysis of Pisarenko's Single-Tone Frequency Estimation 

Algorithm, Signal Processing, 83, pp. 685-690, 2003. 
14. S. M. Savaresi, S. Bittanti, and H. C. So, Closed-Form, Unbiased Frequency Estimation of a 

Noisy Sinusoid Using Notch Filters, IEEE Trans. Aut. Control, 48, 7, pp. 1285-1292, 2003. 
15. H. C. So and K. W. Chan, Reformulation of Pisarenko harmonic decomposition method for 

single-tone frequency estimation, IEEE Trans. Signal Process., 52, 4, pp. 1128–1135, April 
2004. 

16. V. F. Pisarenko, The retrieval of harmonics by linear prediction, Geophis, J. R. Astron. Soc., 33, 
pp. 347–366, 1973. 

17. A. Eriksson and P. Stoica, On statistical analysis of Pisarenko tone frequency estimator, Signal 
Process., 31, 3, pp. 349–353, Apr. 1993. 

18. H. C. So A closed form frequency estimator for a noisy sinusoid, 45th IEEE Midwest Symp. 
Circuits Systems, Tulsa, OK, 2002. 

19. H. C. So and S. K. Ip, A novel frequency estimator and its comparative performances for short 
record lengths, 11th Eur. Signal Processing Conf., Toulouse, France, 2002. 

20. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice Hall, New 
Jersey, 1993. 

 
 
 



 Liviu Toma, Aldo De Sabata, Robert Pazsitka 8  
 

 

260 

 

 


