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This paper examines heating by eddy currents of a ferromagnetic plate that moves at an imposed speed. The periodic 
electromagnetic field problem in nonlinear media is solved by using the iterative method of polarization, of the Fourier series 
decomposition and, at each iteration, the harmonics of the electromagnetic field are obtained by solving the eddy currents 
integral equation. The B-H characteristic of the ferromagnetic medium depends on the temperature. The procedure has 
remarkable advantages over commercial programes. The numerical results are presented. 
 

1. INTRODUCTION 

For efficient mechanical machining of ferromagnetic bars, 
they are heated up and, most commonly, eddy currents are 
used for this purpose. The bar moves through the inside of a 
solenoid powered with a sinusoidal current. The analysis of 
this heating process is particularly complicated, as it involves 
the solving of coupled electromagnetic and thermal field 
problems, the bar being in motion. The physical properties 
of the medium depend on the temperature: the nonlinear B–H 
constitutive relation (Fig. 1), electrical resistivity, thermal 
conductivity, volumetric thermal capacity (Table 1). The 
electromagnetic field is the source of heat for the thermal 
problem, and the boundary conditions change in time. 

Commercial programes (for example, FLUX) can be 
adopted to solve this problem. All commercial programes 
have some important disadvantages. They do not use an 
efficient and accurate enough procedure to treat nonlinearity in 
solving the periodic regime. The iterative method of static 
permeability is most frequently adopted, using different 
correction criteria [1]. In this way, we can use the complex 
images of the electromagnetic field quantities. The procedure 
does not take into account field harmonics, which are 
important when nonlinearity is significant. In addition, the 
method is not always convergent. To obtain better accuracy, 
the transient response method can be adopted, solving the 
field problem in the time domain for several periods. But 
the time required to obtain the asymptotic solution can be 
very long. We can approximate the electromagnetic field 
quantities with a finite number of harmonics. Then, in this 
form, they are introduced into the equations of the field 
(Harmonic balance method [2]). Unfortunately, due to the 
nonlinear B–H relation, the harmonics are coupled and a 
huge nonlinear system results. A particularly effective method 
for solving the periodic electromagnetic field regime in 
nonlinear media was proposed in [3]. The nonlinearity of 
B–H is treated by the polarization fixed point method 
(PFPM) [4], in which the nonlinear medium is replaced 
with a linear calculation medium with magnetic polarization 
nonlinearly corrected depending on the magnetic induction 
B. Polarization is decomposed into Fourier series and, for 
each harmonic, complex images can be used. In [2] it is 
recommended to start computations only with the fundamental, 
using the overrelaxation method described in [5]. Then, 

after reaching the solution on the fundamental, the higher 
harmonics are successively added, obtaining a superior 
accuracy of the result. The polarization method allows the 
choice of the free-space magnetic permeability for the 
calculation medium. Hence the advantage of using the 
integral equation of the eddy currents for solving each field 
harmonic. The procedure was applied for solving the heating 
problems of a non-moving ferromagnetic bar [6] and for the 
determination of the solidification surface at the change of 
the liquid-solid phase [7].  
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Fig. 1 – H–B characteristics for different temperatures. 

Values corresponding to other temperatures 
are obtained by linear interpolation. 

We believe that the last method presented above has 
obvious advantages over other methods and we will adopt it 
in the analysis of the heating of the ferromagnetic bars in 
motion. The adopted model is parallel-plan. 

Table 1 

The temperature dependency 
of the medium physical properties 

θ (°C) 500 1300 2000 
ρ (Ωm) 1.2 1.6 2 

 
θ (°C) 500 1300 1800 

cv (MJ.K.m-3) 3.8 3.5 3 
 

θ (°C) 100 500 1000 1500 
λ (W.K-1.m-1) 40 35 30 25 



2 Thermal treatment of ferromagnetic bars 226 
 

2. HARMONIC ANALYSIS 

According to the polarization method [4], the nonlinear 
relation H = F(B, θ) is replaced by H = B/µ0 – M, where the 
magnetization M is nonlinearly corrected by the equation [4] 

 ( ) ),F(1 θ−μ= BBM ),G( θ≡ B  (1) 

The B–H characteristic of the temperature θ is obtain by 
interpolation of that given in Fig. 1[8]. We expand the 
magnetization M into Fourier series and retain a finite number 
of harmonics: 
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It should be pointed out here that the approximation 
function S by truncated Fourier series is non-expansive [3]. 
For each magnetization harmonic, a sinusoidal regime problem 
is solved using complex images of field quantities. The 
eddy-current integral equation for each pulse harmonic of 
angular frequency ωn ≡ (2n – 1)ω is: 
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where k is the longitudinal unit vector, r and r’ are the 
position vectors of the observation and integration points, 

|| ,rr −=R . After solving the integral equation (3), the 
harmonic n of the magnetic induction is determined with 
the equation: 
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The function )(MZBM Z =⎯→⎯  is non-expansive. 
Magnetic induction time value is obtained from the Fourier 
series: 
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3. NUMERICAL SOLUTION 
OF THE EDDY CURRENT EQUATION  

For the numerical solution of the equation (3), we divide 
the domain Ωf occupied by the ferromagnetic bar into I 
subdomains ωi, and the domain Ω0 of the imposed currents, 
in Q subdomains ω0q, on each subdomain considering that 
the values of Jn, J0n, and Mn are constant. By integrating the 
equation (3) on each subdomain in Ωf, we obtain the system 
of algebraic equations: 
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where 
– ρm, Sm and Jm are the resistivity, surface and current 

density for the domain ωm; 
– J0q is the current density imposed in the subdomain ω0q; 
– Mi is the magnetization in the subdomain ωi; 
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In comparison with [6], the value of β0mq is time 
depending because of bar moving, The most convenient 
alternative is to choose polygonal subdomains, and, in this 
case, the above integrals can be obtained analytically. By 
separating the complex quantities of the system (6) into real 
and imaginary components we can write it by using matrices. 
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where 
– β is the matrix with the elements βmi; 
– δ is the diagonal matrix with the elements 

δ ρ /ω;mm m mS=  

– nJ '  and nJ" , nA 0'  and nA 0" , MnA'  and MnA"  are 
the column matrices of the real and imaginary components 
of the current density Jn, of the potential vector A0n 
components, of the imposed current density and the 
potential vector AMn due to magnetization: 
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A0n remains unchanged during the iterations of the 
polarization method, while AMn is corrected for each iteration. 
In the example of computation, smaller rectangular subdomains 
were chosen with smaller width in the edge area in order to 
adapt to the electromagnetic field skin effect.  

The numerical calculation of the magnetic induction for 
each harmonic is done with 
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For magnetization correction, it is necessary to determine 
the average magnetic induction value on each subdomain ωm: 
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where 0 ,n mB  is produced by the imposed current density 
and in comparison with [6], is time depending. 
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where (dlm; dli') is the dyadic product between the two 
vectors. Note that the mediation function on AV subdomains 
is non-expansive. On each subdomain, the magnetization 
correction is done by the G function, also resulting that it is 
constant on the subdomains. The G function is contraction. 

Consequently, the procedure for solving the eddy current 
problem by the polarization method and the eddy current 
equation follows the scheme 
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The above chain involves the composition of the 

functions SGAVZ  that are non-expansive or 
contractions. The result is a contraction and the numerical 
procedure is convergent (Picard-Banach). 

4. SOLUTION 
OF THE THERMAL DIFFUSION PROBLEM 

The temperature distribution θ is obtained by solving the 
thermal diffusion equation  

 
( ) p
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where λ is the thermal conductivity; cv is the volumetric 
thermal capacity of the material, both depending on the 
temperature and p are the specific losses obtained by solving 
the eddy current problem. The boundary condition is 
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where θe is the outside temperature; α is the thermal 
convection coefficient, which depends on time, due to the 
movement of the bar. The time discretization of the equation 
(16) is done by the trapezium method, and the spatial 
discretization is done by the finite element method. Thermal 
conductivity and heat capacity are iteratively corrected 
depending on the temperature. 

5. STAGES OF THE COMPUTATION PROGRAME  

1. We set the maximum number of nit(n) iterations and 
er(n) equations of the PFPM for the harmonics n to be 
successively taken into account.  

2. We determine the matrices β, δ and ζ  that appear in 
the equations (10) and (13).  

3. At first, we take into account only the fundamental; 
the calculations stop at the iteration n1, when the error is: 
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or when the number of nit(1) iterations is exceeded. With 
M1 being the fundamental of magnetization, we have 
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is also added, the equation (18) becomes 
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The material parameters correspond to the initial 
temperature.  

4. With the current density values obtained at point 3, we 
determine the specific losses p. We choose the time step 

tΔ . We determine the temperature field by solving the 
thermal diffusion equation 

 ( ) p
t

cv =
∂
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If the temperature variation is too high, we reduce the 
time step, and if it is too low, we increase it. We correct the 
material parameters and follow the same calculations. 

Observation. To determine the speed of the bar and to 
reduce the computation time, we calculate the time in 
which the bar is heated to θfin (for example, 1 0000C), 
without moving. Then, admitting that the bar moves until 
its upper side leaves the inductor, the speed is determined.  

 
a) 
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b) 

Fig. 2 – Field lines of magnetic induction: a) t = 2.33 s, 
speed = 11.65 mm/s, θmax = 312°C, phase = 90°; b) t = 5.41 s, 

speed = 27 mm/s, θmax = 791.3°C, phase = 90°. 

6. ILLUSTRATIVE EXAMPLE  

The width of the bar is 20 mm, and the height is 100 mm. 
The current density in the coil is 8 A/mm2, with the 
frequency of 5 kHz. The bar advances at 5 mm/s. For different 
positions of the bar, the field lines are drawn in (Fig. 2), and 
the isotherms in (Fig. 3). 

  
a)   b) 

Fig. 3 – Isotherms: a) t = 2.33 s, speed = 11.65 mm/s, 
θmax = 312°C; b) t = 5.27 s, speed = 26.36 mm/s, θmax = 775°C. 

7. CONCLUSIONS 

The aim of this paper was to analyze the heating of the 
ferromagnetic bars by eddy currents. By analyzing the 
methods offered in specialized literature the higher efficiency 

of the procedure proposed in [3, 6] has been achieved. 
Although the B–H relation is nonlinear, the polarization 
method allows solving the periodic electromagnetic field 
problem on harmonics. The coupling of the harmonics is 
done only at the correction of the magnetization (1), while 
it is necessary to determine the magnetic induction in the 
time domain (5). The choice of the magnetic permeability 
of free-space for the calculation medium allows the use of 
the integral equation of the eddy currents for obtaining the 
solutions of each harmonic. Thus, the coefficients of the 
matrices of the systems necessary to determine the eddy 
currents (10) and the magnetic induction harmonics (13) are 
calculated once. Considering initially only the fundamental, 
from the harmonic spectrum we obtain a solution close to 
the exact one. The speed of convergence can be spectacularly 
increased by using over-relaxation.  

Then the solution is refined by successively adding higher 
harmonics.  
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