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First used in cryptography, Kappa Index of Coincidence (Kappa IC) is an unexplored 
approach in molecular genetics. We used Kappa Index of Coincidence to determine 
new patterns and evolutionary signatures in DNA sequences. For analyzing genetic data 
through Kappa Index of Coincidence, we have created an open source project named 
DNAKAPPA. Extensive tests were conducted for eighteen genes from Homo sapiens 
and twelve Human Immunodeficiency Virus strains. We obtained three types of 
patterns, namely: KappaIC/C+G%, KappaIC/TM and KappaIC/CpG Obs/Exp. 

1. INTRODUCTION 

The examination of DNA sequences is a research area of great importance. 
The field of bioinformatics has rapidly developed into an essential asset for modern 
biology and powerful bioinformatics methods have been developed. We present a 
new method to analyze and interpret biological data through Kappa Index of 
Coincidence. The Index of Coincidence (IC) is a statistical measure first described 
by William F. Friedman [1–4]. Index of Coincidence principle is based on letter 
frequency distributions. 

We used Index of Coincidence to discover correlations between DNA 
sequences (e.g. genes, viral genomes or promoter sequences). The order of 
nucleotide molecules influences the overall stability of a DNA sequence. For 
instance, two DNA sequences with identical C+G content can have different 
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melting temperatures ( MT ). By extracting Kappa Index of Coincidence (Kappa IC) 
and MT from a sliding window we can measure the localized values along the 
sequence. Kappa Index of Coincidence plotted on a graph against other types of 
signals (e.g. MT or C+G%) form a recognizable pattern. These patterns (Figure 1) 
may have important implications for molecular genetics (e.g. selection pressure 
determination or gene prediction). 

The evolutionary dynamics provided fault safe mechanisms in mammalian 
genes which can be highlighted by Kappa IC. For instance, DNA transcription 
starts near multiple alternative start sites, usually after a CpG island [5]. CpG 
islands are regions which show a CpG (Cytosine-phosphate-Guanine) ratio greater 
than 60% and are found near approximately 40% of promoters from mammalian 
genes [6, 7]. 

The same fault safe mechanism is observed for CpG island positions. CG 
content vary continuously and CpG islands decay or renew due to point mutations 
and selection pressure [8–10], both in the eukaryotic genomes and in smaller 
sequences like virus genomes [11]. 

2. MATERIAL AND METHODS 

We downloaded the assembled human genome (human build 37) and several 
viral sequences from NCBI database. We used sliding window techniques for 
reading four types of signals: Kappa IC, MT , C+G% and ExpObsCpG / ratio. The 
sliding window (fixed length of 30b) starts at the beginning of a DNA sequence. 
All nucleotides within the new sliding window are processed in order to generate 
each of the four signal types. Once processing is complete, the sliding window is 
moved down by an offset of one nucleotide. The processing of all nucleotides from 
the sliding window is repeated and the window continues to move down on the 
DNA sequence until it reaches the end. 

We begin by reading each signal in order to plot the data. First, we determine 
the MT  (defined as the dissociation temperature of the primer/template duplex) 
value for each DNA sequence in the sliding window. We used Marmur-
Schildkraut-Doty formula (shown below) for determining the melting temperature 
of nucleic acids, also used for calculation of MT on PCR primers and hybridization 
probes in Polymerase Chain Reaction (PCR) processes [12–14] 

.675)%mol(41.0])Na[(log6.165.81 10 N
GCTM −+×+×+= +  

In above equation, the sodium ion concentration ]Na[ +  is 0.05 M and N 
represents the length of a DNA sequence. The CG percentage is also calculated for 
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each sliding window: 100)( ×++++= GCTAGCCGcontent  and is compared 
with the Kappa Index of Coincidence. We use a color scheme that make 
Kappa/C+G% spots more visible. The red and blue colors represent threshold 
values where C+G% > Kappa is plotted in red color and C+G% < Kappa is plotted 
in blue color (Fig. 1, section a)). 

The third type of signal extracted from each sliding window is ExpObsCpG / . 
The CpG count represents the number of CG dinucleotides in the sequence. The 
ratio of observed and expected [15] CpG dinucleotides is calculated according to  

GC
NCpGCpG ExpObs ×

×
=/ , 

where N represents the length of a DNA sequence. The last type of signal extracted 
from the sliding window is Kappa IC. The formula for Kappa IC is shown below, 
where sequences A and B have the same length N. Only if an iA  nucleotide from 
sequence A matches the iB  correspondent from sequence B, then ∑ is incremented 
by 1. 
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With small changes, the same method for measuring the Index of 
Coincidence was applied for only one sequence, in which the sequence was 
actually compared with itself, as shown below in the algorithm implementation.  
 
Function IC(ByVal s1 As String) As Variant 

max = Len(s1) - 1 
For u = 1 To max 

s2 = Mid(s1, u + 1) 
For i = 1 To Len(s2) 

If Mid(s1, i, 1) = Mid(s2, i, 1) Then 
count = count + 1 

End If 
Next i 
total = total + (count / Len(s2) * 100) 
count = 0 

Next u 
IC = Round((total / max), 2) 

End Function 
 
From what we observed, an input sequence of any size, must contain at least 

two types of nucleotides in order to obtain the Kappa Index of Coincidence below 
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100% (ie. sequence “AAAAAAAA” will generate a Kappa IC value of 100%, 
while a sequence of the same size “AAATAAAA” will generate a Kappa IC value 
of 81.87%.). After determining each signal separately, (C+G)%, ExpObsCpG /  and 

MT  values are compared with Kappa IC on a graph. 

3. RESULTS 

There are many signal types that can be obtained through Kappa Index of 
Coincidence which have distinctive features compared with other signals like 
C+G% (Figure 2, section d). DNA sequences that differ only by a single nucleotide 
molecule show completely different results.  

Figure 2, section d2, shows two sequences – (CG)n(TC)42(T)(CG)n and 
(GC)n(G)(TC)43(CG)n which generate a Kappa IC signal pattern radically 
different from other signals generated by (G+C)%. Furthermore, a deletion of 
thymine (T) and other three insertions (a guanine and a TpC dinucleotide) in the 
first sequence shows a phase shift in Kappa IC signal (Fig. 2, section d2)). Another 
proof for the high sensitivity of Kappa IC are the sequences (CG)n(G)43(CG)n and 
(CG)n(G)44(CG)n which differ by one nucleotide (Fig. 2, section d5)). In this case, 
the middle of the slope passes from a noisy signal to a clean one. Moreover, 
sequences (GC)n(TC)43(GC)n and (GC)n(TG)43(GC)n differ by two types of 
dinucleotide structures, namely TpC and TpG. Interestingly, even with these small 
differences the first sequence shows a clean signal whereas the second sequence 
shows a noisy signal (Fig. 2, section d3)). 

We used our DNAKAPPA software to plot Kappa Index of Coincidence 
values against G+C percentage, the melting temperature ( MT ) and ExpObsCpG / . 

Extensive tests were conducted for eighteen genes from Homo sapiens – GRCh37 
primary reference assembly: ALMS1, BBS5, PROP1, SLC2A2, BBS7, COL8A2, 
PPP1R3A, POMC, CRHR2, FGFR3, PCSK1, LMNA, GHRHR, GPC1, LEP, 
HSD11B1, GPR35, H6PD (Figure 1) and viral genomes like Human 
Immunodeficiency Virus (Fig. 3 Section a)) (all downloaded from the NCBI FTP 
servers).  

Figure 1, subsection a, shows a color scheme. If (C+G)% > Kappa IC then 
C+G% values are plotted in red color and if C+G% < Kappa then Kappa IC values 
are plotted in blue color. The right side of all Kappa IC/(C+G)% patterns contain 
GC-rich sequences while their left side contain AT-rich sequences. Figure 1, 
subsection b, shows Kappa IC on y-axis and MT  ratio on x-axis.  



104 Paul Gagniuc et al. 5 
 

 

 
Fig. 1 – Three types of Kappa IC patterns. Eighteen genes from Homo sapiens (assembly GRCh37) 

were analyzed, Section: a) Kappa IC/(C+G)% patterns;  
b) Kappa IC/TM patterns;  

c) Kappa IC/CpG(Exp/Obs) patterns. 
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Fig. 2 – Comparative analysis, Section: a) Kappa IC patterns of POMC gene from eight different 

organisms; b) analysis of artificially generated DNA sequences; c) analysis of Homo sapiens 
mitochondrial genome; d) eight Kappa IC signal types. 
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Figure 1, subsection c, shows Kappa IC on y-axis and ExpObsCpG / ratio on x-
axis. In this case, as CpG dinucleotide structures are more frequent, these patterns 
show more lines toward the right side of the chart. Vertical positioning of these 
lines is determined by the CpG distribution inside the sequence. A more scattered 
distribution of CpG dinucleotides pushes these lines towards the bottom of the 
chart while a cluster formation of these structures positions these lines to the top of 
the chart.  

Figure 2 shows a further analysis of POMC gene from eight different 
organisms [16] which may suggest the importance of Kappa IC in determining the 
selection pressure for a DNA sequence. POMC-derived peptides (Pro-
opiomelanocortin) are associated with body weight regulation in the central 
nervous system [17, 18]. Diabetes has multiple causes and is commonly associated 
with obesity [19]. POMC neurons regulate glucose homeostasis and for this reason 
it is believed that POMC gene is often involved in diabetes [20]. In some species, 
these POMC patterns show a more prominent part in their left side, indicating a 
high presence of short AT-rich repetitions. These observations may be linked to 
other studies regarding the incidence of diabetes in different species [21–24]. 
Therefore, we suggest a possible correlation between short AT-rich repetitions and 
the predisposition for diabetes in different species. 

Artificially generated sequences (with an equal probability of occurrence for 
A, T, C and G), regardless of the DNA sequence length, have a similar diagram 
type as shown in Fig. 2, section b. Figure 2, section c, shows a distinctive signature 
of Homo sapiens mitochondrial genome. Pattern similarities between 
mitochondrial genome and randomly generated sequences tend to confirm once 
more the oxidative stress and the lack of rules in the distribution of point mutations 
inside the mitochondrial genome. 

4. DISCUSSION 

We developed a program called DNAKAPPA (Fig. 3, section b). The 
properties of DNAKAPPA visualization make it a novel method of analyzing DNA 
sequences. The visualization process enables the identification of distribution 
differences along the sequence. DNAKAPPA is an open source program written in 
Visual Basic and it is freely available on the web at http://dnakappa.novusordo.ro.  

It runs on all Windows operating systems and does not require installation. 
The package size is 1.77 Mb and the memory requirements are between 1.2 Mb 
and 1.5 Mb (Windows 7 and Windows XP). DNAKAPPA can analyze DNA 
sequences up to 500 kb. The program requires two initial parameters. The first 
parameter is the sliding window length. The second parameter is the sliding 
window step.  
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In Fig. 3, section b, the chart at the top of the DNAKAPPA window shows 
dinucleotide and nucleotide frequencies, Kappa Index of Coincidence values, MT  
values and motif sequences found on 5'-3' and 3'-5' strands. Fig. 3, subsection b1) 
shows Kappa IC on y-axis and C+G % on x-axis. Fig. 3, subsection b2) shows the 
blue/red color scheme for Kappa IC (y-axis) and C+G % (x-axis). Fig. 3, 
subsection b3) shows Kappa IC on y-axis and ExpObsCpG / ratio on x-axis. Fig. 3, 

subsection b4) shows Kappa IC on y-axis and MT  on x-axis. 
DNAKAPPA was tested on a computer equipped with a 2.8 GHz processor, 

500 MB RAM and 80 GB HDD. On average, DNAKAPPA scan speed is 1.5 Kb/s. 
Another feature worth mentioning is the DNAKAPPA interface that makes a 
dynamic correlation between the diagram and the sequence. 

 

 

Fig. 3 – DNAKAPPA program. Section a) shows the analysis three envelope glycoprotein genes of 
HIV-1 isolate SC24-40, GX84-59 and GX79-7. Section b) shows a screenshot of DNAKAPPA 

program analyzing POMC gene from Homo sapiens genome. 

By moving the mouse over the diagram, DNAKAPPA selects the appropriate 
plain text sequence. The aim of the project is to act like a platform for other future 
applications intended for different types of studies on nucleic acids.  

Nevertheless, in future tests we wish to point out possible correlations 
between Kappa IC patterns obtained from gene sequences and protein structures.  

The prediction of gene structure in DNA sequences have been the focus of 
the scientific community over the past few years. Because DNA sequences have a 
probabilistic and non-deterministic structure, computational linguistic methods are 
effective for describing genomic structures. Many algorithms from electrical 
engineering and cryptography can be adapted for the field of molecular genetics 
and bioinformatics [25–28]. 
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5. CONCLUSIONS 

In this study we examined new patterns using Kappa Index of Coincidence 
and other parameters already used in molecular genetics: G+C percentage, the 
nucleic acids melting temperature ( MT ) and ExpObsCpG / ratio. We showed possible 
applications for Kappa IC and we believe that these patterns may have important 
implications for molecular genetics in the near future.  

ACKNOWLEDGEMENTS 

This work was supported by the Romanian Ministry of Education and 
Research and represents a part of the Research Project PNII Partnerships 42-
161/2008. Also was partially supported by the Sectoral Operational Programme 
Human Resources Development, financed from the European Social Fund and by 
the Romanian Government under the contract number POSDRU/89/1.5/S/64109.  

Received on 22 July 2011 

REFERENCES 

1. Friedman, W.F., The index of coincidence and its applications in cryptology, Department of 
Ciphers, Publ 22. Geneva, Illinois, USA, Riverbank Laboratories.  

2. Mountjoy, Marjorie, The Bar Statistics. NSA Technical Journal, VII, 2, 4, 1963. 
3. Friedman, W.F. and Callimahos, L.D., Military Cryptanalytics, Part I, 2. Reprinted by Aegean 

Park Press, 1985. 
4. Kahn, David, The Codebreakers, The Story of SecretWriting, New York, Macmillan, 1996. 
5. Kawaji, H., Frith, M.C., Katayama, S., Sandelin, A., Kai, C., Kawai, J., Carninci, P., Hayashizaki, 

Y., Dynamic usage of transcription start sites within core promoters, Genome Biol., 7, R118, 
2006. 

6. Fatemi, M., Pao, M.M., Jeong, S., Gal-Yam, E.N., Egger, G., Weisenberger, D.J., Jones, P.A., 
Footprinting of mammalian promoters: use of a CpG DNA methyltransferase revealing 
nucleosome positions at a single molecule level, Nucleic Acids Res., 33, 20, e176, 2005. 

7. Saxonov, S., Berg, P., Brutlag, DL., A genome-wide analysis of CpG dinucleotides in the human 
genome distinguishes two distinct classes of promoters, Proc. Natl. Acad. Sci. USA, 103, 5, 
pp.1412-1417, 2006. 

8. Antequera, F., Structure, function and evolution of CpG island promoters, Cell Mol. Life Sci., 60, 
8, pp.1647-58, 2003. 

9. Saxonov, S., Berg, P., Brutlag, DL., A genome-wide analysis of CpG dinucleotides in the human 
genome distinguishes two distinct classes of promoters, Proc. Natl. Acad. Sci. USA., 103, 5, 
pp. 1412-1417, 2006. 

10. Hui Zhao, H., Li, QZ., Zeng, CQ., Yang, HM., Yu, J., Neighboring-Nucleotide Effects on the 
Mutation Patterns of the Rice Genome, Geno. Prot. Bioinfo., 3, 3, pp. 158-168, 2005. 

11. Greenbaum, BD., Levine, AJ., Bhanot, G., Rabadan, R., Patterns of Evolution and Host Gene 
Mimicry in Influenza and Other RNA Viruses, PLoS Pathog., 4, 6, 2008. 



10 DNA patterns obtained through Kappa index of coincidence 109 
 

 

12. Marmur, J., Doty, P., Determination of the base composition of deoxyribonucleic acid from its 
thermal denaturation temperature, J. Mol. Biol., 5, pp. 109-118, 1962. 

13. Wetmur, JG., DNA probes: applications of the principles of nucleic acid hybridization, Crit Rev. 
Biochem. Mol. Biol., 26, 3-4, pp. 227-59, 1991. 

14. von Ahsen, N., Wittwer, CT., Schütz, E., Oligonucleotide Melting Temperatures under PCR 
Conditions: NearestNeighbor Corrections for Mg21, Deoxynucleotide Triphosphate, and 
Dimethyl Sulfoxide Concentrations with Comparison to Alternative Empirical Formulas, 
Clinical Chemistry, 47, 11, pp. 1956-1961, 2001. 

15. Gardiner-Garden, M., Frommer, M., CpG islands in vertebrate genomes, J. Mol. Biol. 196, 2, 
pp. 261-282, 1987. 

16. Raffin-Sanson, M.L., de Keyzer, Y., Bertagna, X., Proopiomelanocortin, a polypeptide precursor 
with multiple functions: from physiology to pathological conditions, European Journal of 
Endocrinology, 149, 2, pp. 79-90, 2003. 

17. Huszar, D., Lynch, C.A., Fairchild-Huntress, V., Dunmore, J.H., Fang, Q., Berkemeier, L.R., Gu, 
W., Kesterson, R.A., Boston, B.A., Cone, R.D., Smith, F.J., Campfield, L.A., Burn, P., Lee, F. 
Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell, 88, pp. 131-
141, 1997. 

18. Barsh, G.S., Farooqi, I.S., O'Rahilly, S. Genetics of body-weight regulation. Nature, 404, pp. 644-
651, 2000. 

19. Smyth, S., Heron, A., Diabetes and obesity: the twin epidemics. 12, 1, pp. 75-80, 2006. 
20. Parton, L.E., Ye, C.P., Coppari, R., Enriori, P.J., Choi, B., Zhang, C.Y., Xu, C., Vianna, C.R., 

Balthasar, N,, Lee, C.E., Elmquist, J.K., Cowley, M.A., Lowell, B.B., Glucose sensing by 
POMC neurons regulates glucose homeostasis and is impaired in obesity, 449(7159), pp. 228-
232, 2007. 

21. Baral, R., Rand, J. S., Catt, M. & Farrow, H. A., Prevalence of feline diabetes mellitus in a feline 
private practice, J. Vet. Intern. Med., 17, p. 433, 2003. 

22. Panciera, D. L., Thomas, C. B., Eicker, S. W. & Atkins, C. E., Epizootiological patterns of 
diabetes mellitus in cats: 333 cases (1980–1986), J. Am. Vet. Med. Assoc., 197, pp. 1504-1508, 
1990. 

23. Guptill, L., Glickman, L., Glickman, N., Time trends and risk factors for diabetes mellitus in 
dogs: analysis of veterinary medical data base records (1970–1999), Vet. J., 165, pp. 240-247, 
2003. 

24. Wild, S., Roglic, G., Green, A., Sicree, R., King, H., Global prevalence of diabetes: estimates for 
2000 and projections for 2030, Diabetes Care, 27, 5, pp. 1047-1053, 2004. 

25. Teodor Leuca,  Mihaela Nova, Optimization of eddy-current heating process using genetic 
algorithm, Rev. Roum. Sci. Techn. – Électrotechn. et  Énerg.,  54, 4, pp. 355-363, 2009. 

26. Florea Ioan Hănţilă, Florin Constantinescu, Alexandru Gabriel, Gheorghe, Miruna Niţescu, Mihai 
Maricar, A new algorithm for frequency domain analysis of nonlinear circuits, Rev. Roum. Sci. 
Techn. – Électrotechn. et  Énerg.,  54, 1, pp. 57-66, 2009. 

27. Felix Albu, Constantin Paleologu, Yuriy Zakharov, An efficient algorithm for active noise control, 
Rev. Roum. Sci. Techn. – Électrotechn. et  Énerg.,  55, 4, pp. 416-425, 2010. 

28. Rui  j.p.  de  Figueired, A neural-network-based approach to speech signal predictio, Rev. Roum. 
Sci. Techn. – Électrotechn. et  Énerg.,  55, 1, pp. 42-48, 2010. 

 




