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The 3D models, represented by vertex positions and the association between triangles and vertices, colors, normals and texture 
information, are stored as virtual reality modeling language (VRML) format files. Connectivity information and photometry 
information are not treated in this paper. The vertices coordinates follow a vector quantization process in order to obey the 
bitrate control constraint. Next, a blind source separation algorithm is proposed to perform a decorrelation phase. At the end, 
arithmetic coding is applied to form the final bit steam, thus containing the compressed 3D information. The obtained 
experimental results are performant, being comparable with those of actual compression methods of 3D models, thereby proving 
an actual gain. Thus, the technique based on the BSS algorithm offers an alternative way for the compression of 3D models. 
 

1. INTRODUCTION 

The principle of geometry encoding requires the 
following steps: 

a) the coordinates are uniformly quantized, the 
quantization step being chosen by an iterative search 
algorithm to control the number of bits per vertex [1]; 

b) data decorrelation is performed by a Blind Source 
Separation method, which takes the correlated geometry as 
observations and decorrelated geometry as sources; 

c) the decorrelated components and mixing matrix are 
encoded using the arithmetic coding. 

Blind source separation (BSS) is a tool for estimating 
original sources from their mixtures at multiple sensors    
[2, 3]. More natural sources generate the signals S, and after 
their propagation signals X are received on multiple 
sensors. The source signals S can be considered as a 
stationary multivariate process, mutually uncorrelated. 

Next it will be shown how 3D model geometry can be 
expressed as a linear combination of decorrelated 
geometry's components making possible to apply BSS 
algorithm for data decorrelation. 

2. VECTOR QUANTIZATION 

This algorithm assumes a lossy data compression. Thus, 
for a vector X = {X1, X2, …, XN}, having mean square error 
(MSE) as distortion measure and Nc number of 
codevectors, the algorithm finds a C codebook and a P 
partition in the smallest average distortion. 

The method uses a training sequence (TS) obtained from 
3D data of several known models: 
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C denotes the codebook, C={c1, c2, …,cNc}, where         
ck = (ckx, cky, ckz) is a 3D message, k = 1, 2, …, Nc. 

Considering Pk the encoding volume associated at ck 
message and P = {P1, P2, …, PNc} a partition of the entire 
volume, if vector Xp belongs to the encoding volume Pq, its 
approximation 

PXq  is done by: qX cq p = . The 

representative message cq is determined to be the closest in 
average distortion from the Xp vector: 

2dim

1

1
3 dim p q

p

X c
=

= −∑MSE . (2)

The codebook design problem finds C and P such that 
MSE is minimized. There is an initial codebook C(0), where 
the initial message is set as the average of the entire TS. 
Next, the message is split into two and the algorithm runs 
with the two messages as the initial codebook. The splitting 
process continues until the value of fixed Nc is achieved. 
The description of the algorithm is presented in the 
following lines: 
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• for (i = 1; i <= Nc; i++) {  
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3. increment index i: i++; 
4. compute average distortion:  
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Encoding process takes a vector Xp and outputs the 
message cq that offers the lowest distortion in the   
codebook C. 

3. DECORRELATION 
BY BLIND SOURCE SEPARATION 

Some methods in blind source separation (BSS) and 
independent components analysis (ICA) use higher order 
statistics to obtain statistically independent sources [4]. 
Other approaches such as Karhunen-Loève transform 
(KLT) [5], eigenvalues decomposition (EVD) [6] and 
second order blind identification (SOBI) [7] exploit the 
temporal, spatial or spectral diversities of the sources. This 
is achieved by using delayed covariance matrices at 
different delays to impose a decorrelated structure on the 
solution. 

When the input vector elements are highly correlated, 
like the geometry of 3D model, by its processing with a 
BSS algorithm, the transformed vector elements tend to be 
uncorrelated. The dimension of the transformed vector can 
be reduced by neglecting eigenvectors that correspond to 
small eigenvalues. Thus, only the coefficients 
corresponding to the highest energy are retained. The 
inverse transform gives a reconstruction of the original 
vector with loss. 

Let Xi, 1 ≤ i ≤N be a vertices sequence quantified by qXi 
values. With a linear prediction rule, it is possible to 
estimate iXq ˆ . The difference between the value of the 

current vertex qXi and its estimate iXq ˆ  is called "prediction 
error" dXi. Only these errors are coded in predictive 
techniques. This rule was first proposed by C. J. Kuo [8] 
and uses the coefficients α, β and γ to predict the current 
vertex X from the three already crossed vertices belonging 
to the same polygon: 

X = α Xi + β Xj + γ Xk, with α + β + γ = 1. (3)

Using the predictive method [8] it is possible to express 
the geometry vector g as follows: 
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The matrix of observations denoted X is associated to the 
initial geometry, its columns containing N values of the 
vertices for each direction of the Cartesian space. The 
sources' matrix S corresponds to the decorrelated geometry 
coded by predictive compression method: 
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Thus, the initial geometry g is expressed as a linear 
combination of the components of the decorrelated 
geometry dg. 

The geometry description of the 3D model in the VRML 
file shows a strong spatial correlation in each direction of 
the Cartesian coordinate system [9,10]. It is possible to 
decorrelate the data by BSS methods. In this context, the 
initial geometry vector gT = [X1, X2,…, XN]T is expressed by 
a vector dgT with M decorrelated components dgT = [dX1, 
dX2,…, dXM]T, associated with a mixing matrix A[N×M], 
where M << N. 

Because the number of extracted sources is very small, 
their values are included in the header of the compressed 
file. Mixing matrix elements being uncorrelated, determine 
that their corresponding binary data contain more 
identification bits and less refinement bits. Matrix elements 
are quantified, binarized through successive approximation 
and coded using the arithmetic code, which strongly 
compresses the binary information consisting in more 
consecutive bits of the same value 0 or 1 suitable to the 
identification bits. 

At reception 3D model geometry is restored by mixing 
the decorrelated geometry (the extracted sources) using the 
arithmetic decoded and dequantized mixing matrix. 

The M columns of the mixing matrix A have the same 
dimension (N) as the geometry of the 3D model. To reduce 
this disadvantage that affects the compression, the 
geometry is divided into b blocks, denoted bg, of dimension 
N/b: 
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Each block provides a covariance matrix ( )0iXR . These 
matrices are averaged to give a global covariance matrix. 
The diagonalization of this matrix provides a whitening 
matrix W which is then applied to each block of the 
geometry: 
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For each block of whitened geometry a delayed 
covariance matrix ( ) 0, ≠ppiYR  is determined. The 
averaging of these matrices provides a global delayed 
covariance matrix. The diagonalization of this matrix leads 
to a global unitary matrix U, used to separate the sources in 
Cichocki’s algorithm [6]. By applying the transposed of the 
global unitary matrix U to each block of the whitened 
geometry bg the decorrelated geometry blocks are obtained: 

[ ] [ ] [ ]33d T ×⋅×=× MMMM bgUgb . (8)

Consequently, the dimension of the mixing matrix is 
decreased from N×M to N/b×M, and that of the decorrelated 
geometry is increased from M to bM. The number of blocks 
must be chosen so that it should lead to a tradeoff between 
the size of mixing matrix and that of the decorrelated 
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geometry, fact that can ensure the decrease of the mixing 
matrix size as much as possible, altogether with an increase 
of the decorrelated geometry size as little as possible, 
without introducing significant errors at the reconstruction 
of the models. 

4. ARITHMETIC CODING 

Arithmetic coding stops the representation of each 
symbol of the input source through a specific code and, 
together with this, stops the limitation to assign to each 
symbol an integer number of bits. Thus, it becomes possible 
to obtain an average length of code words, close to the 
source entropy. 

Here, the messages are ordered on a disk of probability 
between [0, 1] for a known sequence to both encoder and 
decoder. To each message is assigned a subinterval equal to 
its probability. As the message becomes longer, the interval 
needed to highlight it becomes smaller, and the number of 
bits needed to mention that interval becomes higher. 
Successive messages reduce the size of the field in relation 
to the message probabilities. At the beginning of the 
transmission, the field of the messages is the interval [0, 1]. 
As each message is processed, the field is restricted to that 
portion allocated to the message. The decoder can see 
which subinterval is pointed to by the code stream and 
decode the appropriate message. 

In the following, we will use the transformation x(ck) = k; 
ck ∈ C; k = 1, 2, ... , Nc, where C = {c1, c2, ... , cNc} is the 
codebook of a discrete source and x is a random variable 
that can take the following values 1, 2, ... , Nc. For a given 
distribution of the source, a cumulative distribution 
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random variable x. The distribution function is used to 
divide the interval of length 1 in subintervals [fx(k–1), fx(k)] 
proportional to the values of this function. The emergence 
of first message in the sequence restricts the interval 
containing the label message to one of these subintervals. 
Next, this subinterval is partitioned into subintervals 
proportional to the values of the distribution function, just 
like the interval [0, 1]. 

Let C ={c1, c2, c3, c4} be the source codebook, with the 
following distribution 5.0)( 1 =cP , 25.0)( 2 =cP , 

125.0)( 3 =cP , 125.0)( 4 =cP . Using the relation fx(k) 
defined above, it results fx(1) = 0.5, fx(2) = 0.75, fx(3) = 
0.875 and fx(4) = 1 . 

 
Fig. 1 – Intuitive representation of the ranges 

and their corresponding labels. 

Initially, both the encoder and decoder know the first 
range (Figure 1). On the first disk of the figure, there were 
indicated the values 0.5, 0.75 and 0.875. The subinterval 
containing the label depends on the first message of the 
sequence to be encoded. If that is c1, the label is in the 
range [0, 0.5]. For this example, the subinterval [0, 0.5], 
corresponding to the first message, is divided in the same 
proportions (0.5, 0.75 and 0.875) just like interval [0, 1]. 
On the second disk in Fig. 1, there are indicated the values 
0.25, 0.375 and 0.4375 obtained in this way. Since the 
second message is c2, the interval of length 0.125 is retained 
within the limits 0.25 and 0.375 and is divided 
proportionally to the numbers 0.5, 0.75, and 0.875. Thus, 
the values 0.3125, 0.3437 and 0.3593 indicated on the third 
disk are obtained. As the third message is c3, the interval of 
length 0.0156 is retained, within the limits 0.3437 and 
0.3593, which builds the fourth disk. The values 0.3515, 
0.3554 and 0.35735 are indicated on this. As the fourth 
message is c4, the interval within the limits 0.35735 and 
0.3593 is still retained. 

Proceeding in this way, the encoded message builds up 
as follows: initially [0, 1]; after computation: c1 [0, 0.5], 
c2 [0.25, 0.375], c3 [0.3437, 0.3593], c4 [0.35735 , 0.3593]. 

It isn’t necessary for the decoder to know both ends of 
the range produced by the encoder. A single number within 
the range will suffice. In this paper we chose the labels as 
midpoints of intervals, using the relation: 
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Here, the integer code of Lx(c) is obtained considering 
the binary representation of the number and truncating at 
[log2 1/P(c)] + 1 , where [α] represents the lowest integer 
greater than or equal to α. 

Thus, for the sequence c1, c2, c3, c4 it results Lx(c1): 0.25 = 
= 0*2–1+1*2–2 and c1 integer code: 01; Lx(c2): 0.625 = 1*2–

1+0*2–2+1*2–3 and c2 integer code: 101; Lx(c3): 0.8125 = 1*2–

1+1*2–2+0*2–3+1*2–4 and c3 integer code: 1101; Lx(c4): 
0.9375= 1*2–1+1*2–2+1*2–3+1*2–4 and c4 integer code: 1111. 

5. EXPERIMENTAL RESULTS 

The encoding method takes as inputs the VRML file and 
the bitrate (the required number of bits for encoding each 
vertex of the mesh), and generates a compressed file as 
output. The decoder takes the compressed file as input and 
produces a VRML file. 

We have tested the proposed algorithm for three bitrates 
on several 3D models, including Beethoven, Carnation and 
Satellite (representative models, selected in this paper to 
present our results). The size of the fifty tested 3D models 
increases from a few faces to hundreds of thousands of 
faces. 

The results were evaluated both subjectively and 
objectively. Subjective evaluation is done by visual inspection 
of the reconstructed models using a VRML browser. For 
objective evaluation, Frank Bossen developed a software 
for computing the distortion measure [11]. The used 
measure is defined as a metric between two 3D models with 
the same connectivity. For each vertex of the first model, 
the software finds its nearest vertex in the second one and 
reports the distance between them. In reverse order, for 
each vertex of the second model, the software finds its 
closest vertex in the first model and reports the distance 
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between them. The mean value of these distortions for all 
vertices gives the er , that is the distortion measure. 

  
a) original model b) reconstructed models: 8bpv, 4bpv 

Beethoven.wrl 

   
a) original model b) reconstructed models: 8bpv, 5bpv 

Carnation.wrl 

   
a) original model b) reconstructed models: 7bpv, 5bpv 

Satellite.wrl 
Fig. 2 – Subjective evaluation. 

Experimental results on the 3D models named 
Beethoven, Carnation and Satellite are shown in Figure 2. 
The geometry reconstruction has been affected by both the 
quantization error and the error corresponding to neglected 
coefficients with small energy in the decorrelation process 
using BSS algorithm. The first image represents the original 
3D model. The second image corresponds to a good 
reconstruction for which the bitrate and the number of 
sources are optimal and the reconstruction error is small. In 
the third image one can see the degradation by using a too 
small bitrate and number of sources. 

The geometry compression performances for EVD 
algorithm [6], appreciated on both the geometry 
compression rate r[%] (the ratio between compressed 
geometry and original geometry of 3D model) and 
reconstruction error corresponding to some values of bitrate 
for three sources (M = 3) and two blocks (b = 2), are shown 
in Table 1. Each line of the table corresponds appro-
ximately to the same reconstruction error (with 10–1 
tolerance, invisible to the human eye). The obtained results 
are performant, comparable with those of actual 
compression methods of 3D models. 

Table 1 

Objective evaluation 
a) Beethoven.wrl b) Carnation.wrl c) Satellite.wrl 
bitrate r[%] bitrate r[%] bitrate r[%] 

8 85 8 87 7 85 
6 86 7 88 6 89 
4 89 5 93 5 91 

6. CONCLUSION 

Here, we addressed the issue of geometry compression of 
3D models. Within the reconstruction of 3D models 
framework and under a bitrate control constraint, we studied 
the vector quantization, arithmetic coding and blind source 
separation algorithms for geometry compression. 

The compression technique based on BSS algorithm 
decorrelates the initial geometry, preserving the information 
needed for reconstruction in the reduced mixing matrix and 
in the extracted sources. After processing the data number 
has not decreased. On the contrary, in addition to the matrix 
elements the values of the extracted sources have appeared. 
The gain obtained after processing using BSS method in 
terms of compression is the passing from the spatially 
correlated geometry data to the mixing matrix data that no 
longer have the same property. In contrast to the correlated 
geometry situation, the resulted binary data (having more 
identification bits and less refinement bits) allow to the 
arithmetic encoder an obvious superior compression to the 
case of the spatially correlated data. 

The best results are obtained when the correlated 
geometry is divided into two blocks (b = 2), one separated 
three sources (M = 3) from each block of correlated 
geometry, and one used a global mixing matrix with 
dimension equals N / 2 × 3. 

The reconstructed models in Fig. 2 show the geometry 
changes as a function of the required number of bits per 
vertex. The simulation carried out on fifty 3D models, 
established that for a correct coded model, geometry 
compression rate is higher than 80 % at a given bitrate, 
which is an effective gain in 3D models compression. 

The method of compression proposed in this paper has 
performances comparable with the actual methods and a 
detailed study in this regard will be presented in a further 
paper. 
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