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Active Magnetic Bearings (AMB) support a body by magnetic pulling forces, without 
any mechanical contact. The main advantages of such bearings compared with the 
traditional solutions are: absence of mechanical friction and wear, lubricant-free 
operation and therefore suitability for severe environments and applications, active 
vibration control and unbalance compensation. This paper deals with modeling, 
simulation and control of radial active magnetic bearing system for a high-speed drive. 
The system model from previous works [1, 5] has been extended with a model of the 
power amplifier with PWM control. Hence, dynamic behavior of currents in the bearing 
windings can also be investigated with this model. Two different controllers are used in 
the work, i.e. PID and state-space controller. Both will be compared to each other for 
two cases: a) lift-off of the rotor, and b) unbalance in the rotor which causes periodical 
disturbance force, which has also to be compensated by the magnetic bearing, 
additionally to the gravitation force.  

1. INTRODUCTION 

Magnetic bearings have been a research topic for several decades. During this 
time, magnetic bearings have evolved into an industry product that – due to its 
advantages over conventional bearing technology – is used in many practical 
applications as: turbo molecular vacuum pumps, gas pipeline centrifugal 
compressors, sealed pumps, and electric utilities power plant equipment. This 
progress was possible due to progress made in power electronics, microprocessors 
and digital control. 

Today, there are two trends in AMB technology: on the one hand the high 
speed drives gain more importance especially in the machining and vacuum 
technology, and on the other hand, analog control is abandoned in favor of digital 
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control, which offers much more flexibility for taking full advantage of the AMB 
technology. For the operation of the AMB system, position control is necessary, 
since the magnetic force system is inherently unstable. The design of such control 
is a challenging task since it must compensate for the instability inherent to the 
magnetic bearing and at the same time avoid destabilization of any flexible modes 
the rotor may exhibit, especially at high speed, which is aimed in our case at 
40 000 min–1 and for a rotor with a mass of 14 kg. At the moment this high speed 
drive is supported by AMB with analogue control [8], which shall be replaced by 
digital control in the future. 

The purpose of this paper is to contribute to digital controller design for 
AMB rotor system. This paper follows two directions: 

1. Identification of AMB rotor system model, with detailed modeling of PWM 
of current controller. 

2. Digital controller design, searching for a well-suited controller that fits for 
all necessities. Two types of controllers were distinguished and will be discussed:  

a) PID controllers and b) State-space controllers based on LQR method 
(Linear Quadratic Regulator).  

Since in large-signal model the unstable AMB is non-linear, the most useful 
approaches are: (i) to use differential windings magnetic bearing to reduce the 
influence of non-linearity and (ii) to linearize the model in a small region around 
equilibrium points in order to use linear control techniques. However, the 
performance of a single operating point linear controller can be quite good only 
near the equilibrium conditions. As the variation of the rotor position is small due 
to the small air gap of AC motors, this method of linearization applies well. 

 
Fig. 1 – Magnetic bearing demonstrator with two radial bearings (max. force 230 N). 
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Comparisons between PID and state-space controller for magnetic bearings 
are available in several publications in the past, for example [6] and [7]. For a 
current research on high-speed machine with 40 000 min–1 at Technische 
Universität Darmstadt, the comparison here shall be done with a demonstrator 
(Fig. 1), so previous simulation of the control software is necessary, which is 
included here. 

2. MODELS AND FORMULATIONS 

The core of AMB system is an electromagnet, which creates a magnetic field 
that provides a magnetic pull force that supports the body without mechanical 
contact, if a current is passed through electromagnet coil. The AMB exerts an 
attractive force on the body that opposes the gravitational force, which pulls the 
body downward. If the current is kept constant, and the body is moving downward, 
the magnetic force on the body is decreasing as the distance between electromagnet 
and body is increasing. This leads to the body falling down. If the body is moving 
upwards, the attractive magnetic force is increasing, and the body is accelerated 
towards the electromagnet. 

To avoid this unstable behavior, the electric current must be permanently 
adjusted. A position sensor (e.g. capacitive or eddy-current sensor) measures the 
deviation from reference position. Based on this measurement a control system 
(controller/microprocessor) computes the value of current that must be applied to 
electromagnet coil and sends this information to power amplifier. The power 
amplifier generates this electric current, which excites the electromagnet coil. With 
an appropriately designed controller the body can be held at its reference position, 
and system dynamics can be adjusted in a wide range. 

In technical applications, differential winding bearings are used. So, for 
positioning the rotor in one axis, a second magnet identical to first one, but exerting 
pulling force in opposite direction, is used. The non-linear force-distance 
characteristic tends to be more linear. It improves the dynamics, since now the 
forces on the rotor body can be exerted in both directions of axes. The AMB 
system (Fig. 2) has two degrees of freedom. The two opposing electromagnets are 
operating in differential winding mode (Fig. 3). A constant bias current i0 is 
exciting basic excitation coils for generating the magnetic field, and the control 
current ic is exciting an additional control field which exerts pull forces in positive 
direction, so adding to the field of one magnet, and subtracting to the opposite 
magnet. 
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Fig. 2 – AMB system model. 

A. Magnetic force model 
 

In order to obtain the equation that is describing the AMB behavior the 
following assumptions are used: 

– The permeability of iron part is infinitely high (= ideally unsaturated iron). 
– The magnetic flux density B is homogeneously distributed in the iron core 

and the air gap. 
– The magnetic pole cross-sectional areas are constant along the magnetic 

circuit. 
In air gap, flux density B is proportional to magnetic field strength H, so the 

radial force can be expressed as a function of coil current i and air gap d. 

 
Fig. 3 –  Magnetic bearing with differential windings, connected at constant bias current io  

and switched power amplifier injecting the control current ic . 
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With control and bias current ic, i0 and x = (d0 – d)·cosα, where i0, d0 are 
current and air gap, when rotor is placed in symmetric axis and α is the angle under 
which the magnetic force attracts the rotor [2], equation (1) is obtained: 
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with µ0 = 4π10–7 H/m stands for the vacuum magnetic permeability, N is coil 
number of turns and A is iron cross-sectional area. Equation (1b) is valid, if number 
of turns of basic and control coils N0 and Nc are identical: N0 = Nc = N, otherwise 
i0' = (N0/Nc) · i0 has to be used. 

Table 1 

Simulation: AMB parameters 

Maximum force Fmax 
Rotor mass, m 
Air gap, d 
Bias current, i0 
Control current, ic 
No. of turns for basic 
excitation N0 
No. of turns for control 
excitation Nc 

230 
14 
0.6 
6 
15 
46 
 
18  

N 
kg 
mm 
A 
A 
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Fig. 4 – Calculated attraction force F(ic, x) of differential winding mode, showing more linear  
behaviour (one radial bearing of the demonstrator Fig. 1). 
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Equation (1a) and Fig. 4 show the quadratic dependence of force with control 
current ic and inversely quadratic dependence with air gap d, which – due to 
differential winding mode – gives a wide range of linear dynamic operation as 
equation (2) 

 i c xF k i k x≈ ⋅ + ⋅ . (2) 
 

B. Rigid body rotor model 
 
The mathematical model does not take into account axial movement, this 

being justified by negligible coupling effect between the radial and axial dynamics 
[2]. So, the mathematical model refers only to a rigid rotor body, suspended in two 
identical radial active magnetic bearings. 

   Sensor A  

x

z

O

Sensor B  

xA 

AMB (A) AMB (B)  

xB 

a b

sa sb 

yA 

yB y 

 
Fig. 5 – Magnetically suspended rigid rotor shaft. 

The rotor dynamics in the x-z-plane can be described using displacement x of 
rotor’s center of gravity O and rotation angle φ between rotor and horizontal z-axis 
through O (Fig. 5). Usually, even for high-speed operation rotational speed n of 
rotor is kept well below 70 % of first bending natural frequency fe, so the rotor may 
be treated as rigid body. The rather low dynamic elasticity of AMB due to the low 
value of kx gives vibration of the rigid body in the bearings, called common mode 
and differential mode vibration. From Fig. 5 with force and torque in x-z-plane and 
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y-z-plane, the mechanical equation for evaluating the AMB system dynamic 
behavior, considering rotating rigid rotor vibration, can be written as: 

 f = Mּ z&&  + Gּ z& . (3) 

In (3), ( )Txyyx pfpf −=f  is force and torque component vector [2], M is 
mass matrix (see Equation (6)), G is gyroscopic matrix (see Equation (7)) and 

( )Tx y= β −αz  is coordinate component vector, using the global coordinate 
system x, y, z. In order to give a proper command, (3) must be translated in AMB 
coordinate system using a transformation matrix T , with the axial distance a, b of 
the radial bearings from O [2]. 

 .
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With  fc = T . f  ,  zc = T . z, we get: 

 fc = Mcּ z&& c + Gcּ z& c.  (5) 

In (5) the subscript c denotes the control coordinate system. Mc, Gc and zc have 
following expressions, where m is rotor mass, Ix, Iy, Iz are rotor inertia moments 
around x, y, z-axis and Ω = 2πn  is angular speed around z-axis. With the use of 
inverse T´ of matrix T we get: 

 x

y

0 0 0
0 0 0

,
0 0 0
0 0 0

m
I

m
I

 
 
 ′ ′= ⋅ ⋅ = ⋅ ⋅
 
 
  

cM T M T T T  (6) 

 
z

0 0 0 0
0 0 0 1

Ω ,
0 0 0 0
0 1 0 0

I

  
  
  ′ ′= ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅  
   −   

cG T G T T T  
(7) 

 
A

B

A

B

.

x
x
y
y

 
 
 =
 
 
  

cz  (8) 



164 Chip Rinaldi Sabirin et al. 8 
 

 

Equation (2) describes a scalar equation, which is valid for Fig. 3. For describing 
Fig. 5, it will be written as vector equation  

 fc = Kxּzc + Kiּic . (9) 

Force-displacement factors matrix Kx and force-current factors matrix Ki 
represent the elements that link the mechanical equations with electric ones for x- 
and y-direction of bearings (A) and (B). The variable ic represents the control 

current vector ( )T
A B A Bx x y yi i i i=ci . 
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(10) 

Considering gravitation and disturbance force vectors fg and fd, equation (5) will be 
extended to  

 fc + fg + fd = Mcּ z&& c + Gcּ z&c. (11) 

Based on (9), (10) and (11), Fig. 6 shows the AMB model. 
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Fig. 6 – AMB system model. 
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C. PWM inverter model 
 

One of the extensions to the previous works, [1] and [5], is the modeling of 
power amplifiers. Four switch mode MOSFET full-bridges inject control current ic 
into the bearing windings with a switching frequency of 50 kHz. The bearing 

windings are modeled by the transfer function 
)(

1
)(
)(

RsLsU
sI

+
=  with a current slope 

of maximum 50 A/ms due to the inductivity of 500 µH and resistance of 500 mΩ 
of the windings.  

Given a reference current by the position controller, the current controller 
calculates appropriate duty cycles for the MOSFETs of the full-bridges. As a two-
level PWM hardware, the full-bridges apply either +24V or –24V on the bearings 
windings, with a duration depending on the mentioned duty cycle. The simulated 
current behavior of the PWM inverter model is depicted in Fig. 7. The current 
ripple shows conformity to real current behavior of the power amplifiers. 
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Fig. 7 – Calculated control current of the PWM inverter model for y-axis of radial bearing  

with 7.5 A set-point value. 

3. CONTROL SYSTEM 

Extending previous works in [1] and [5], following improvements are done: 
1. Design of PID controller in digital method. 
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2. Design of decentralized state-space controller for each bearing axis with 
reduced observer. Simulation is performed in fixed-step calculations. 

3. Modeling of power amplifier injecting control current ic into bearing windings. 
Based on the AMB model for both radial bearings (A) and (B), two control 

methods are presented. 
 

A. PID control 
 

PID control method was already used at the early days of AMB [2]. It 
requires a small computing power and provides good robustness and stability, if the 
operating point is inside of linear performance range of the AMB. PID control 
procedure associated with design of decentralized controllers is able to control 
AMB systems with collocation of force direction and sensed direction of rotor 
movement at the position sensor’s location, and gives stability for discrete time 
control. 

For position control loop, we consider the AMB as Single Input Single 
Output (SISO) system. Hence, it is sufficient to investigate only one bearing axis, 
and we gain a transfer function of the AMB in z-domain of z-transform, using 
sampling time ts: 
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As the closed loop transfer function is described as a fourth order system, for 
PID controller implementation an extended parallel model with four parameters KP, 
KI, KD, r was chosen. 
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In (13) KP is proportional gain, KI is integrative gain, KD is derivative gain 
and the fourth parameter r is the coefficient of derivative filter, used in order to 
limit step variations of derivative term as a consequence of fast changes. 

To assure a good system response at set-point reference variations even at 
high frequencies, a feed-forward controller is added into the controller model. In 
this case the feed-forward controller transfer function is the inverse of discrete 
plant transfer function in z-domain (12). 
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Fig. 8 – AMB control structure with PID controller. 

Table 2 

PID controller parameters 

Proportional gain, KP 
Integrative gain, KI 
Saturation limit for integrative part, ILIM 
Time after that the integration is started, ITIME 
Derivative gain, KD 
Derivative filter gain, r 
Sampling time, ts 

1.5 
0.0025 

300 bits 
1 ms 

10 
–0.0033 

0.1 ms  

In Fig. 8, HR and HP represent the controller respectively plant transfer 
function, HFFC is the feed-forward controller transfer function and HM is the 
reference model taken into consideration. 
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The corresponding reference model is given by 
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In Table 2, the PID main data obtained via polynomial method for poles 
allocation are presented. 
 

B. State-space control 
 

State-Space controller is perfectly suited for numerical computations. In the 
last years DSP (Digital Signal Processor) computation power has increased. A 
large variety of state space controllers can be implemented. The algorithm for 
controller parameters (K-vector as feed-back controller) is more complex than in 
PID controller’s case. The method is based on matrices operations that describe the 
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system model, and for this reason, the inner state of the process can be accessed, 
not only inputs and outputs. 

The first step, when dealing with a multivariable system design, is to perform 
the decoupling of MIMO (Multiple Input Multiple Output) system and to find an 
approximate model consisting of two or more SISO systems. 

A continuous, linear, constant-coefficient system of differential equations can 
always be expressed as a set of first-order matrix differential equations [3]: 
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where x is the inner states vector, u is the control input vector and y represents the 
outputs vector and according to [4] 
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One of the most attractive features of state-space controller design method is 
that the procedure consists of two independent steps. First step assumes that all 
states are known. This assumption allows proceeding with first design step, 
namely, control law. Second step is to design an estimator, in order to estimate 
entire inner state vector. Finally, control algorithm will consist of a combination of 
control law and estimator, with control law calculations based on estimated state. 

A control law that has considerable convenience is simply the feedback of 
linear combination of all state elements  

 [ ] [ ]T2121 ...... xxkk ⋅−=⋅−= xKu . (18) 

The control law design consists in finding elements of K-vector, so that roots of 
characteristic equation (19) are in desired location. 

 det  – 0.⋅ ⋅ =Φ + Γz I K  (19) 

In this paper control K-vector will be determined using LQR  solution. The 
LQR solution may be found using two methods [4] : 

1. First method is to compute K-vector. From the beginning, in constant steps 
of the problem, the task is to compute S (solution of vector Riccati equation) 
backward in time until it reaches steady value S∞ and then to use theory for time 
varying optimal control. 

2. Second method is to look for steady-state solution of Riccati equation. In 
steady state S(k) becomes equal with S(k + 1) and in this case algebraic Riccati 
equation can be used. This method is going to be used for determining K-vector. 
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As some of the states are directly measured, a reduced-order estimator will be 
used [4]. 

In order to pursue an estimator for unmeasured part, we partition the state 
vector x into two parts: xa represent part directly measured (rotor position) or 
calculated respectively (rotor movement speed), and xb is the remaining portion to 
be estimated (i.e. gravitation and disturbance force), as shown in (20). 
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Table 3 

State space parameters 

Control vector 
 

Luenberger vector 
K = [5.49 A/m ; 0.03 A/(m/s)]ּ104  
L = [0.00006 N/m ; 1.39 N/(m/s)]ּ103 
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Fig. 9 – Luenberger observer block diagram. 

From (20), we get the equations that describe unknown states vector part [4], 
as shown in (21). 
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For this artificial system (21) with well-known entrance vector ν, Luenberger 
observer can be sketched (Fig. 9). 

In Table 3 the state-space main data obtained via LQR method are presented. 

4.  SIMULATION RESULTS 

The models of AMB and digital control software had been implemented in 
MATLAB/Simulink to get simulation results. In Figs. 10, 11, 12 and 13, the 
calculated position and current variations during rotor lifting are presented. 

The main difference between Figs. 10 and 11 is the absence of overshoot 
in the rotor movement with state-space controller, compared to the PID 
controller, with almost identical lift-off time needed to reach the zero reference 
position. The oscillations in the rotor movement with the PID controller are also 
reflected by the behavior of its control current in Fig. 12. 
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Fig. 10 – Calculated rotor positions, using PID control of radial AMB of all four axes x, y 

for A and B-bearing.  
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Fig. 11 – Calculated rotor positions, using State Space Control of radial AMB of all four axes x, y 

for A- and B-bearing. 
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Fig. 12 – Calculated currents ic , required for rotor lifting with PID control. 

Although both controllers manage to bring the system in steady state, it is 
very important to maintain the rotor in levitation, when a disturbance acts upon the 
system. In order to study the behavior of both control methods, two types of 
disturbances will be considered: 

1. Static disturbance simulated as a force step (step function model) is applied 
to rotor at 17 s after system is started. The static disturbance force fd equals 100 N. 
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The force is located at the axial outer side of the rotor near bearing B with a 
distance of 231 mm from the gravity center O. Angle between the direction of 
gravitation force and disturbance force is –30°. 

2. Imbalance effect due to rotor center of gravity dislocation from rotational 
axis by a certain displacement es. Dislocation es of gravity center O from rotational 
axis (that is centered at rotor geometrical center) is given by an additional mass 
∆ms on the rotor surface at each axial position of magnetic bearings. 
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Fig. 13 – Calculated currents ic , required for rotor lifting with state-space control. 
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Fig. 14 – Calculated PID rejection of a static disturbance at speed 40 000 rot/min. 
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Fig. 15 – Calculated state-space rejection of a static disturbance at speed 40 000 rot/min. 
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Fig. 16 – Calculated rotor orbit of state-space control with static imbalance  
from lift-off to rotational speed at 40 000 rot/min. 

In Figs. 14 and 15, the simulation results are presented, which were obtained 
for static disturbance force that appears when rotor is rotating. We can see, that the 
state-space controller can maintain the rotor position better than the PID controller 
(displacement of the rotor up to 200 µm with the PID controller, against the rotor 
displacement up to 50 µm with the state-space controller). 
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In Fig. 16, the geometric locus of symmetry axis of bearing B with state-
space controller is shown during the rotor movement from lifting-off at standstill 
and acceleration up to 40 000 rot/min, when the rotor imbalance is applied 
according to ISO 1940 (Q = 2.5 mm/s at 40 000 rot/min). This corresponds with 
two masses, each ∆ms of 94 mg, fixed on the rotor surface. Each mass is placed at 
each magnetic bearing axial distance from the rotor gravity center. The resulting 
periodical force due to the imbalance equals 74.2 N for the total rotor. The 
movement in detail is shown in Fig. 17, where the rotor is oscillating in a small 
range of 0.6 µm around the zero reference position. 
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Fig. 17 – Zoomed calculated position behavior of Fig. 16. 

5. EXPERIMENT RESULTS 

The control algorithm is implemented on a DSP platform  TMS320F2812, 
which is used in a test-bench (Fig. 18). The implementation data of the AMB is 
listed in Table 4. 

In experiments at our test bench, the performance of the active magnetic 
bearings, controlled by a digital PID controller, were investigated. The rotor 
positions were measured during the turn-on of the active magnetic bearing and 
during an external step disturbance force of 40 N. 
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Table 4 

Specification of the active magnetic bearing system 

DSP TMS320F2812: 
Clock frequency 
A/D-converters 
Internal PWM generators  

 
150 MHz 
12 bits 
12 modules 

PID Control Algorithm: 
Position controller rate 
Current controller rate 

 
9.375 kHz 
93.75 kHz 

Power Amplifier: 
Rated current 
Rated voltage 

 
20 A 
24 V 

Position Sensor 
Type 

 
Eddy-Current 

 
Fig. 18 – Magnetic bearing test-bench at Darmstadt University of Technology. 

Figure 19 shows the locus of the A- and B-side of the rotor during the turn-on 
of the active magnetic bearing system. The zero position represents the middle 
point of the stator-fixed frame. The negative part of the axis yA and yB have the 
same direction as the gravitation force. Before the turn-on, the rotor was lying on 
the auxiliary bearings, which have an air gap of 200 µm. Therefore the initial rotor 
positions at both A- and B-side are located at yA = yB = –200 µm. During the turn-
on, the rotor position has an overshoot up to approximately yA = 50 µm, and 
reaches at the steady-state the zero position. The overshoot is typical behavior due 
to the strong proportional gain KP of the PID controller.  
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Fig. 19 – Measured rotor position locus during the turn-on of the magnetic bearing with digital PID 
controller at the: a) A-side; b) B-side; 

(KP = 50516.57 A/m, KD = 89.81 As/m, KI = 52631.58 s–1A/m). 

The comparison of measurement and calculation is shown in Fig. 20 for the 
rotor position in the axis yA during the turn-on of the magnetic bearing. The 
simulation model of the active magnetic bearing system in MATLAB/Simulink 
was linearized at the operating point in the zero position. The real active magnetic 
bearing generates forces, which have quadratic dependency from the winding 
current and the rotor displacement. This is the reason of the differences between 
the calculated and measured rotor positions. 

The measured rotor position in Fig. 20a shows that the rotor at about t = 0.5 s 
jumps to a position yA ≈ – 40 µm, while the calculated rotor position shows the 
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rotor moving to yA ≈ 0 directly, apart from oscillations in the calculated rotor 
position for about 75 ms into the steady state position yA = 0 at t ≈ 575 ms (Fig. 
20c). In reality (measured rotor position), there is always slight asymmetry on the 
rotor position inside the air gap, therefore the rotor does not move directly into the 
zero position. This is compensated by the integrative part KI of the PID-controller, 
visible on the rotor movement at 0.5 s ≤ t ≤ 2 s (Fig. 20b). For t > 2 s, the measured 
rotor position has reached the zero position. 

 

 

 

 

 

 

 

a 

 

 

 

 

 

 

 

                                     
              b                                                                   c 

b c 

Fig. 20 – Rotor position of the axis yA during turn-on at t = 0.5 s of the magnetic bearing: 
a) comparison of calculated and measured position; b) measured position; c) calculated position 

(KP = 50516.57 A/m, KD = 89.81 As/m, KI = 52631.58 s–1A/m). 
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Figures 21–23 show the rotor position locus during a step disturbance of 
40 N at standstill (n = 0). The step disturbance in the measurement was realized by 
a falling iron block with a mass of 4.075 kg and a falling distance of 2 cm. 
Comparison between Fig. 21 and Fig. 22 show the influence of different 
proportional part KP of the PID-controller. With higher KP, the active magnetic 
bearing system has higher stiffness, resulting in a lower maximum displacement of 
the rotor. This displacement is yA ≈ –100 µm at Fig. 21, which has 1.5 times higher 
KP compared to Fig. 22. There, the displacement is yA ≈ –200 µm.  
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Fig. 21 – Measured rotor position locus at the 

shaft A-side during a step disturbance of 40 N on 
the middle of the shaft at standstill (n = 0,  
KP = 50516.57 A/m, KD = 89.81 As/m). 

Fig. 22 – Measured rotor position locus at the 
shaft A-side during a step disturbance of 40 N on 

the middle of the shaft at standstill (n = 0,  
KP = 33677.71 A/m and KD = 89.81 As/m). 
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Fig. 23 – Measured rotor position locus at the shaft A-side during a step disturbance of 40 N on the 

middle of the shaft at standstill (n = 0, KP = 50516.57 A/m and KD = 59.87 As/m). 
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Compensating fast dynamic disturbance depends on the derivative part KD of 
the PID controller. This is shown by the comparison of the measured rotor positions 
between Fig. 21 (KD = 98.81 As/m) and Fig. 23 (KD = 59.87 As/m). Higher value of 
KD keeps the rotor position deviation dynamically in a smaller range.  

Several influences limit the maximum value of KD. It must be kept in mind 
that too high KD value can amplify coupled undesired signal noise resulting in 
oscillations of the controller output that can disturb the controller performance. 
Therefore, in the digital controller a digital finite impulse response filter (FIR 
filter) is applied together with analogue low-pass filter to minimize the signal noise 
coupled into the controller loop. 

Furthermore, the power amplifier has a current limit of 20 A (Table 4). With 
stronger dynamic disturbance and thus higher derivative gain output, the power 
amplifier will reach its current limit. Thus, no additional compensation of the 
dynamic disturbance can be performed. 

Corresponding to the locus in Fig. 21, Fig. 24 shows the time functions of the 
rotor positions in the axis ya during the step disturbance. The iron block fell onto 
the rotor shaft in gravitation force direction at given times marked by the text “40 
N load” at its beginning, which yields the step disturbance statically. However, the 
first impact of the iron block on the rotor shaft results in a dynamic disturbance 
which can not be assumed as a pure step disturbance. In the calculation result, a 
pure step disturbance with 40 N was used. This is one reason for the measured 
rotor position oscillations at the beginning of the disturbance. In Fig. 24, the 
calculated and measured rotor positions are compared to each other. Statically, the 
results of the calculation and measured rotor positions have similar behavior. 
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Fig. 24 – Comparison of calculated and measured rotor position of axis ya due to step disturbance 

of 40 N on the middle of the shaft at standstill (n = 0, KP = 50516.57 A/m, KD = 89.81 As/m,  
KI = 52631.58 s-1A/m). 
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Fig. 25 – Measured rotor position of the axis ya during a step disturbance of 40 N on the middle  

of the shaft at standstill (n = 0) with different KP. 
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Fig. 26 – Measured rotor position of the axis ya during a step disturbance of 40 N on the middle  

of the shaft at standstill (n = 0) with different KD. 

Corresponding to the comparison of different KP in Fig. 21 and Fig. 22, the 
time functions of the measured rotor positions are shown in Fig. 25. Fig. 26 shows 
the measured rotor positions with different derivative gain KD of the PID-
controller, as already discussed in the comparison of Figs. 21 and 23. 
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6. CONCLUSIONS 

The advantages of state-space control method in the magnetic bearings 
compared to digital PID control are presented by simulation. The time required for 
reaching standstill position in state-space control is shorter by about 9% than in 
PID case and the rotor moves to the reference position without any oscillations. 

The simulations were demonstrated by taking into consideration the load 
disturbances on the rotor shaft. Experiments on the digital PID controller were 
performed to verify the simulated PID behavior. Implementation of the state-space 
controller on the experimental set-up is currently under process.  

Although state-space method is offering better control performance, it must 
be said that the implementation of the software on a DSP and the DSP system 
requirements, like necessary software space of control algorithm implementation 
and allowable sensor signal noise at the DSP inputs, are more complex than in the 
PID case. 

Received on 16 July 2006 
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