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Once the first generation of electric vehicles will reach the end of life for their batteries, local governments and battery producer 
will be facing a real problem. These batteries while they do not meet the requirements for the automotive industry any more, still 
have around 80 % of their initial capacity which makes them reusable in other applications.  In order to do so, they have to be 
properly evaluated so batteries with similar characteristics are used in new battery packs. This paper analyzes three of the most 
common screening methods in terms of accuracy, complexity and operational time. This is done by developing a multi-criteria 
analysis, which scores each method.

1. INTRODUCTION 
In the last period, a substantial growth in the number of 

electric vehicles (EVs) and plug-in hybrid electric vehicles 
(PHEVs) was observed sustained by a growing concern of 
pollution-related issues and health problems. The batteries that 
equip this first generation of EVs and PEHVs reached their 
end-of-life (EoL) limit and will begin to be replaced [1].  

The fate of these batteries is regulated in EU by Directive 
2000/53/EC – A review of dynamic material flow analysis 
methods and Directive 2006/66/EC – Batteries and 
Accumulators and Waste Batteries and Accumulators which 
mandate battery manufactures and local governments to 
properly collect and recycle batteries when they are no longer in 
service [2,3]. Recycling of the batteries can produce secondary 
raw materials that can be used to produce new batteries 
increasing the degree of circularity and limiting the extraction 
of new materials. On the other hand, these so-called ‘retired’ 
batteries still have around 80 % of their initial capacities, but 
they are put out of service because they do not meet the safety 
regulation of automotive industry and transportation laws. 
These aspects lead to the concept of giving a second life to 
electric vehicle batteries and reusing them in other applications 
with lower current rates and energy storage demands such as 
uninterrupted power supplies (UPS), small home appliances, 
buffers, personal transportation devices, etc. [2,4].  

These applications will help to prolong the usage life of 
batteries and also reduce their cost for the lifetime, which, 
in return, will help to the popularization and generalization 
of EVs [1]. 

Although the economic benefits of the retired batteries 
are attractive, from the literature survey done [2,5–11], they 
cannot be reintegrated in other applications as-is. Several 
factors related to aging mechanism make necessary 
preliminary screening processes in order to determine 
batteries with suitable characteristics. Otherwise, batteries 
with poor consistency can easily be overcharged or over-
discharged, which can lead to heat runaway, risk of 
explosion, etc. [9,12,13]. 

Traditionally screening approaches for automotive 
batteries include:  

• A full charge-discharge test. This method is very 
accurate and reliable, but it is time-consuming and 
costly and cannot be applied to large-scale battery 
screening [5,14]. 
• Open circuit voltage (OCV) measurements. It is 
based on applying different current pulse and 
measuring the relaxation time of batteries. While 
faster than the full charge-discharge test, it is still not 
suitable for large scale screenings [6,10]. 
• Internal resistance methods, based on dc pulse 
charge/discharge or ac analysis. These methods 
involve quick tests, but the end result is obtained only 
after extensive data processing [15,16]. 
• Statistical approaches which investigate the 
capacity and impedance distribution of cells within a 
battery pack. These approaches require extended data 
from when the battery was in use [17]. 
• Machine learning methods. Typically, these are 
represented by predictive filters [18], genetic 
algorithms, support vector machines and artificial 
neural networks [9] which are based on a large set of 
data for training and usually produce high efficiency. 
• Hybrid methods that are obtained by combining 
one or several above mentioned techniques in order to 
obtain a quick and accurate screening process [19]. 

All these methods are done at the cell level, but they can 
be used for module screening as well.  

In this study, are analyzed some of the most common 
methods in terms of accuracy, complexity and operational time. 
For this, a multi-criteria analysis (MCA) is developed to 
calculate a score for each method. The study is performed on 
three LiFePO4 (LFP) batteries that were randomly chosen from 
a battery lot whose parameters were previously determined. 

The main contributions of the paper include the 
following aspects: 

• A detailed analysis of the most common screening 
methods (Section 2). 
• The development of the multi-criteria analysis 
(Section 3) for scoring each method. 
• An experimental study for determining the best-
suited method for chosen LFP batteries (Section 4). 
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2. SCREENING METHODS 
All screening approaches are two-stage processes. In the 

first step, all the batteries are visually examined in order to 
remove all those that present corrosions, swellings, actuated 
valves, or any other sign of defect. Only the batteries that 
pass the first test can be used in second-life applications 
and are submitted to the sorting methods. 

The previously presented approaches fall in one of two 
categories, either they are based on quick tests with 
relatively low accuracy, or they require historical data from 
when the battery was, in order to improve the results.  

Considering the growing number of retired batteries that 
will appear in a short period, we feel that the optics of 
screening methods should change and the focus will be on 
developing very rapid methods. Regarding the accuracy of 
the methods, this should be around 3 %. This value is the 
initial battery capacity inconsistency from any battery pack 
with BMS [20].  

In this context, the efficiency of the internal resistance 
methods will be analyzed. These methods are the fastest 
reported to the accuracy of the full charge-discharge test, 
which is the most accurate. 

2.1. INTERNAL RESISTANCE METHODS 
The internal resistance methods are divided by the type 

of power used in dc methods and ac methods. The dc 
methods require a charge or discharge pulse followed by 
the Ohm's law to calculate the internal resistance under 
sufficient rest conditions (1). 

R∆t =
U t + ∆t( )−U t( )

I
, (1) 

where U(t) and U(t+∆t) are the voltages at the beginning 
and at the end of the pulse and I is the value of the current 
pulse applied. 

The value of the current pulse is usually equal to the 
nominal capacity of the battery (1 C), and the period for it is 
between 2 and 30 s. In this study, an 18 s pulse will be used, 
in concordance with the hybrid pulse power characterization 
test (HPPCT) from the partnership for new generation of 
vehicles (PNGV) manual [21].  

The ac methods use a 1 kHz signal or higher to excites 
the battery and then the Ohm’s law calculates the 
resistance. The ac method usually shows different values 
than the dc method but both readings are correct [22]. In 
order to determine the age of the battery through resistance 
methods, the evolution of the resistance according to the 
number of discharge cycles should be previously known. 

2.2. FULL CHARGE-DISCHARGE APPROACH 
In this case, the battery is fully charged using a constant 

current – constant voltage (cc-cv) device in respect with the 
maximum voltage provided by the manufacturer and after a rest 
period that is usually 1 hour, the battery is discharged (at the 
nominal current) until the cut off voltage is reached. The age of 
the battery is determined by calculating the state of health 
(SoH) – 2 of the battery and then applying the same percentage 
to the number of discharge cycles provided by the manufacturer 

 SoH =
QD

Qn
⋅100, (2)

where QD is the discharged capacity and Qn is the nominal 
capacity. 

3. MULTI-CRITERIA ANALYSIS 
MCA is a tool for comparison and ranking of the 

different results, especially when a single criterion is not 
enough. It deals with several concepts like criteria, options, 
performance matrix, score and weight [23]. 

The options are items that are subject to comparison.  
After the MCA is performed, the best one is selected in 
conformity with the chosen criteria. In our case, the options 
are the three selected screening methods: dc resistance, ac 
resistance and the full charge-discharge cycle. 

A criterion is a scale according to which the options are 
evaluated. Each criterion evaluates a relevant aspect of the 
option and is independent of the others. For this study, the 
criteria are the complexity of the methods, the accuracy and, 
most importantly, the operational time. 

The weights represent a percentage value assigned to 
each criterion to highlight its importance. In our case, due to 
the fact that we want to obtain an objective as possible 
screening method, all the weights are equal to 33.33 %. 

The concepts presented earlier are systematically 
represented as the performance matrix of the MCA. Here 
each row represents an option and each column includes an 
evaluation criterion. The values that are recorded in each 
cell represent the performance level of an option for a 
particular evaluation criterion. 

4. RESULTS AND DISCUSSIONS 
For accurately evaluating the three screening methods, 

we randomly have chosen three LFP batteries from a 20 
batteries lot. The characteristics for all the batteries were 
determined over a two-year period and each parameter for a 
corresponding state of charge (SoC) was recorded. To 
simplify the process, the temperature was constant during 
all the tests and for this study is still constant. The nominal 
characteristics of a battery are presented in Table 1. 

Table 1 
LFP Battery Characteristics 

Characteristic Value 
Nominal capacity [mAh] 1450 
Cut-off voltage [V] 2.50 
Maximum charge voltage [V] 3.65 
Nominal discharge current [A] 0.7 
Maximum continuous discharge current [A] 2.1 
Internal resistance [mΩ] < 40 
Number of cycles to DoD 80 % 1000 
To characterize the lot, the battery with the most average 

behavior and was chosen and its evolution of the dc and ac 
resistances is presented in Fig. 1. This evolution was also 
estimated through curve fitting techniques and hence 
equation (3) and (4) were obtained. 

  

Fig. 1 — The evolution of resistance over SoH. 
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RAC = −0.0019 ⋅SoH+ 0.2316  (3) 

RDC = −0.002 ⋅SoH+ 0.2836 . (4) 

In order to determine the parameters needed for the 
MCA, three LFP batteries were submitted to an extended 
experimental study. First, the batteries were charged using a 
CC-CV method and then after a rest period of 1 hour they 
were discharge with a 0.7 A current. The discharged 
capacities were measured and the time needed to do so was 
recorded as the operational time for this approach. After 
another rest period, the batteries were fully charged left 
them to rest for 1 hour again. The ac resistance was 
measured using a commercially available ACR 1 kHz 
battery tester. In the end, a 2.1 A discharge pulse was 
applied for 18 seconds and the starting and ending values of 
the output voltages were recorded. The obtained results are 
presented in Table 2. 

Table 2 
LFP Battery results 

Screening methods Battery 
number Full charge-discharge [mAh] Rdc [Ω] Rac [Ω] 

1 1194 0.116 0.065 
2 1191 0.118 0.063 
3 1151 0.124 0.084 

 
Using (3), (4) and the values from Table 1, the age of 

each battery as the number of discharge cycles was 
determined – Table 3. 

Table 3 
Age of each battery 
Age according to each method Battery 

number Full charge-discharge  Rdc [Ω] Rac [Ω] 
1 823 838 876 
2 821 828 887 
3 793 798 776 

 
The actual age of each battery is 850 cycles for batteries 

1 and 2 and 800 cycles for battery 3. 
To evaluate the complexity of each method, the number 

of steps needed to reach the value of the batteries’ age was 
considered. In this case, the full charge-discharge cycle is 
the least complex and gets value of 1, the Rac method 
requires two steps – value of 2 and Rdc test because of the 
fact it needs an extra step given by applying (1), it receives 
the value of 3. 

The obtained results consist the basis for scoring each 
criterion necessary in the MCA – Table 4. 

Table 4 
Values for the MCA criteria 

Criteria 
 

Battery Accuracy Complexity Operation time 
1 96.82 % 1 6521 s 
2 96.58 % 1 6483 s Full C-D 

3 99.12 % 1 5944 s 
1 98.58 % 3 18 s 
2 97.41 % 3 18 s Rdc 
3 99.75 % 3 18 s 
1 96.94 % 2 1 s 
2 95.64 % 2 1 s Rac 
3 97.00 % 2 1 s 

 

 
In order to develop the MCA performance matrix – 

Table 5, the best values were awarded with 100 points and 
for the others, a proportional score was used. Also, each 
score was multiplied with its appropriate weight. 

Table 5 
MCA performance matrix 

Criteria 
 

Bat Accuracy Complexity Operation time 
Total 

1 32.03 33.33 0.01 65.37 
2 31.95 33.33 0.01 65.29 Full 

C-D 3 32.79 33.33 0.01 66.13 
1 32.61 11.11 1.85 45.57 
2 32.23 11.11 1.85 45.19 Rdc 
3 33 11.11 1.85 45.96 
1 32.07 16.5 33.33 81.90 
2 31.58 16.5 33.33 81.41 Rac 
3 32.09 16.5 33.33 81.92 

 
As can be seen from the values of Table 5, even though 

the Rac method has the smallest values for the accuracy, it 
compensates in terms of complexity and operational time 
and scores an average of 81.74 points, which makes it the 
best method for the chosen criteria. Its low accuracy 
compared to the other methods, is only in a 2 % interval, 
and some part of it is related to eq. (3) which does not fit 
the experimental data as good as the other equation. 

On the other hand, the Rdc method has the best accuracy, 
but this comes from a high complexity process which is 
also time consuming which makes this method to score 
only 45.57 points. The full charge-discharge test was 
chosen here for reference purposes only and manages to 
score an average of 65.59 points. 

5. CONCLUSIONS 
In this paper, three of the most common screening 

methods for LFP batteries were analyzed in terms of 
accuracy, complexity and operational time. For this, a 
balanced MCA was developed and used to determine a 
score for each method according to the chosen criteria.  

The score of the internal resistance method using ac 
power was the highest with 81.74 points. The main 
advantage of this method is that it can be performed very 
fast in only 1 s and although it has the lowest accuracy, this 
in only in a 2 % limit. Overall this method offers the best 
compromise between operation time, accuracy and 
complexity which makes it ideal for screening large number 
of LFP second life batteries. 
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