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We are proposing a new filter for image restoration and enhancement tasks that relies 
on image orientation analysis techniques for steering and directing smoothing or 
enhancement processes. The filter is developed under the Partial Differential Equations 
(PDE) framework using asymmetric orientation estimation operators and it has better 
junction preservation and noise removal properties than existing classical PDE based 
methods. We employ an experimental setup involving several computer generated 
images and a statistical interpretation of the results for proving the efficiency of the 
method in processing images composed of directional textures and degraded by 
additive Gaussian noise. The algorithm is compared also with state–of-the-art non-PDE 
based methods in filtering images containing oriented patterns. 

1. INTRODUCTION 

Within the PDE framework an image restoration or enhancement process is 
modeled using a continuous equation with theoretical properties allowing handling 
a particular degradation model. The simplest PDE is the isotropic diffusion 
equation; for a gray scale image modeled through a luminance function U(x,y), the 
associated PDE is defined as follows: 

 )div( U∇=
∂
∂ c

t
U . (1) 

It has been shown that, for constant diffusivities c, this linear filter is 
equivalent to a convolution of the input image with a bi-dimensional Gaussian 
kernel with a given standard deviation. Consequently, the solution of the PDE, 
computed for a given observation scale t, is blurry and does not allow edge 
preservation. Perona and Malik [1] were the first to address this issue by proposing 
a diffusion filter that penalizes diffusion between regions separated by gradient 
vector norms U∇ ,  superior to a threshold K. Their anisotropic diffusion PDE is 
governed by the same equation (1), endowed with a diffusivity function g(.):  
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The behavior of the filter can be more easily understood if the equation is put 
in terms of directional derivatives along axes collinear with vectors pointing in the 
structure directions (ξ) and the orthogonal ones (η): 

 ηηηξξξ +=
∂
∂ UcUc

t
U , (3) 

with: 

                                             ( )c gξ = ∇U  

                                             ( ) ( )'c g gη = ∇ + ∇ ∇U U U . 
(4) 

Meanwhile the diffusion coefficient in the ξ direction is always positive, the 
one in the η direction becomes negative for gradient vector norms superior to K 
[1], the most important parameter of the method. On this direction the filter can 
invert the smoothing process leading to an edge enhancement action introducing 
(theoretically) unbounded oscillations. Edge enhancement is however deliberately 
introduced in the model since a maximum discrete principle can be imposed in the 
numeric domain by appropriate approximation schemes. 

A relevant modification of the equation was introduced in a later publication 
by Catté et al. [2]; the authors show that a simple preconvolution with a Gaussian 
kernel of standard deviation σ( σG ) can be employed in order to avoid noise 
amplification and still allow edge enhancement to take place: 

 ( ) ( ) 12( ) 1 /c g G U g K
−

σ σ σ  → ∇ ∗ = ∇ = + ∇   U U . (5) 

A different approach was  taken in [3–4] by Weickert in proposing tensor 
driven diffusion processes, expressed formally as follows: 
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A popular choice falling into this category is the Coherence Enhancing 
Diffusion filter (CED) [3] and in this case the diffusion tensor D is derived from a 
set of eigenvectors computed using a structure tensor based approach. The two 
diffusivity functions g1,2(.,.) are dependent on the eigenvalues (λ1,2) of the structure 
tensor and they are chosen in order to impose a specific action for the PDE.  In the 
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case of the CED filter, a coherence measure is defined for favoring preferential 
smoothing along the structure directions (u) [3], computed as the orientation of the 
eigenvector corresponding to the smallest eigenvalue λ2. The filter has been later 
adapted in order to better handle junctions and corners in [5]. 

Other authors considered also that semi-local orientation information must be 
used in order to obtain robust smoothing or enhancing directions. We only mention 
here the works of Carmona [6] and Tschumperlé [7–9], both being based on a 
direct formulation of a diffusion filter in terms of second order directional 
derivatives along the diffusion axes u and v. For instance, the filter proposed in [7] 
computes the solutions of the following PDE: 

 
( ) ( )1 2

01 2 1 2

1 1 2 d
1 1

t
uu vvp p Ta

U U U a
t α

π

α
α=

∂
= + + ∇ α

∂ πλ +λ + λ +λ + ∫U J T ,         (7) 

where α is an orientation in the plane, aα = (cos α sin α)t
 , J  is the Jacobian operator 

and T  is a matrix obtained via a trace operation from the structure tensor. The first 
two terms represent a directional decomposition of a diffusion process and the last 
one is used in order to impose curvature preserving properties to the smoothing 
process. The parameters p1 p2  define the anisotropy of the smoothing process. 

In [10] we introduced the following PDE filter: 

  ( ) ( ) ,
u uu u

U g U U g U U
t u vσ σ

∂ ∂ ∂   = +   ∂ ∂ ∂
 (8) 

with u and v denoting the coordinates along the eigenvectors of the structure tensor  
and g(.) representing a Perona-Malik like diffusion function. The results included 
in [10] showed that the filter can preserve or enhance junctions and corners and has 
good noise removal properties.  

2. PROPOSED METHOD 

The improved filter is a derivation of the method in [10]. We propose a new 
formulation of the PDE that introduces asymmetry in the restoration process for 
directing it away from possible discontinuities of the luminance function such as 
corners and junctions. The filter is formulated both in the continuous and discrete 
domains in this section and its efficiency is proven statistically in section 3. 

2.1. CONTINUOUS MODEL  

Structure tensor based estimation operators are issuing an ambiguity in the  
definition of the diffusion axis  due to the fact that the orientation of the underlying  
eigenvectors is computed using symmetric, modulo π, gradient information.  
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The fundamental idea behind the recently introduced asymmetric orientation 
estimation approaches [11–12] is to define the orientation of the underlying 
patterns at a semi-local scale in an asymmetrical manner i.e. on a modulo 2π per 
basis.  

We employ for our new PDE-based filter the information provided by such 
an operator – IRON (Isotropic Recursive Oriented Network) – reported to be robust 
against additive Gaussian like noise in [12]. The operator introduces asymmetry in 
the orientation estimation process by using non-centered, sliding windows W(x.y,θ) 
on which the variance of the luminance function is computed. These windows are 
steered in each pixel (x0, y0) for all possible orientations θ ⊂ [0, 2π) and the 
orientation is defined as being the angle that corresponds to the maximal 
homogeneity i.e. the minimal variance [12].  

Despite being computationally expensive, such an approach handles naturally 
discontinuities of the luminance function such as corners and junctions that are 
asymmetric by nature. In conjunction with PDE-based filters, IRON was 
previously used in [13] in a multi-directional diffusion model that uses a unique, 
initial orientation estimation step. 

For including asymmetric orientation information in a PDE-driven iterative 
process, we assume right-side semi-differentiability on the maximum homogeneity 
axis on corners and junctions and differentiability on symmetric patterns and on the 
orthogonal directions. We propose the following filter integrating these constraints: 
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with  
u∂
∂±  denoting, respectively, the right and left one-sided derivatives along the 

positive and negative senses of the diffusion axis issued by an IRON operator.  
The purpose of the function f is to detect possible asymmetric configurations 

along the structure’s directions and, for this purpose, we employ a formulation 
inspired from the minmod function used in hyperbolic equations, that is able to 
detect any local extrema [16]: 

 )sgn()sgn(),( babaf ⋅= . (10) 

Meanwhile, on symmetric differentiable patterns equation (9) is equivalent to 

(8), on discontinuities of the luminance function )1),(( −=
∂
∂

∂
∂ −+

u
U

u
Uf  it can be 

expressed as follows: 
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Equation (11) induces one-sided smoothing or enhancement processes in the 
maximum homogeneity direction computed by the IRON operator.  

2.2. NUMERICAL APPROXIMATION SCHEME 

The numerical approximation scheme was derived in order to transpose the 
properties of the continuous model using two-sided or one-sided finite differences 
operators, depending on the local structure of the processed image.  

On symmetric patterns we employ a Perona-Malik like numerical scheme 
along the estimated directions [10, 16]: 
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with both backward and forward differences operators as numerical 
approximations of the directional derivatives : 
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On asymmetric patterns we assume only semi-differentiability on the u 
direction and we derive another numerical approximation scheme that accounts for 
this. We first approximate the right derivative by using one-sided Taylor series 
based development: 

 { },1/ 2,
( ) 2 ( ) ( )

u u uu u u u vu v
g U U g U U g U U

u
+

σ σ σ
+

∂    ≈ −   ∂
. (14) 

Equation (14) can be further expressed as follows: 

 { }1/ 2, ,
( ) 2 ( ) ( ) ( )

u u uu u uu v u v
g U U g U D U g U U

u σ

++
σ σ +

∂   ≈ − ∂
. (15) 

For approximating the diffusivity function with a sub-pixel resolution, we 
employ the same approach as Perona and Malik: 

 )]([)()(
,2/1,2/1 σ

+

+σ+σ =≈ UDgUgUg uvuvu uu
. (16) 

The last term in equation (16) can be computed analytically for each pixel: 
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The complete semi-discrete numerical model includes also an approximation 
for the asymmetry detector function f: 
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 The time derivative is approximated by a forward finite difference and we 
use biquadratic interpolation to handle the needed sub-pixel precision [10]. 

3. RESULTS 

Any attempt to compare PDE based filters is a difficult task. Most models 
have a large number of parameters and the quality of the filtered results depends 
strongly on the particular choice for this set. Having generated an original noise- 
free image and a degraded image, we opted for a full search in the parameter space 
in order to find the best filtered result that maximizes an objective measure. The 
experimental setup includes 15 computer generated images composed of random 
directional patterns, deliberately degraded by Gaussian noise; an example in shown 
in Fig. 1 and the obtained results are summarized in Table 1.   

Based on recent developments in image quality assessment we used the 
variance weighted structural similarity index (VW-SSIM) [15] as the objective 
measure that is able to quantify the quality of the processed results in 
correspondence with the quality perceived by the human visual system.  For further 
reference we also include in Table 2 the best peak signal-to-noise ratios (PSNR). 
All semi-local orientation driven methods yield better results than the anisotropic 
diffusion PDE  and the proposed method is quantitatively superior.  

In order to investigate if these results are due to the particular choice of the 
test images or if they are representative for the performances of a method, we 
performed a non-parametric two-way rank analysis of variance (ANOVA) [14] on 
the VW-SSIM  measures; the results are shown in Table 2.  

More that 90 % of the variability between the obtained VW-SSIM results is 
due to the processing method employed and to the nature of the processed image 
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itself.  The two-way ANOVA design allows us to isolate and investigate only the 
method effect and the extremely low probability (p = 2.48⋅10–18) of a statistical 
Fisher-Snédécou test (F = 52.6456), indicates that the chosen processing method 
has a significant influence on the processed result.  

Table 1   

Quantitative measures. Best VW-SSIM and PSNR values for the experimental setup 

Best filtered results VW-SSIM /PSNR values  
Image  

 
VW-SIM 

/PSNR 
degraded 

image 

Catte et al. 
Eq.(1,5) 

 
 

CED 
 

Eq.(6) 

Tschumperle 
Deriche 
Eq.(7) 

Symmetric 
PDE 

Eq.(8) 

Asymmetric  
PDE 

Eq.(9) 

Method label CAT  CED TSD SYM ASY 

1 0.8881 22.15 0.9600 28.03 0.9767 29.44 0.9767 29.40 0.9835 31.88 0.9876 32.66 
2 0.9242 18.51 0.9543 21.85 0.9724 23.27 0.9712 23.24 0.9795 25.16 0.9809 25.21 
3 0.9009 21.21 0.9642 26.35 0.9756 27.81 0.9780 28.16 0.9827 29.61 0.9850 29.80 
4 0.8581 20.17 0.9780 29.11 0.9675 28.40 0.9778 28.21 0.9844 29.96 0.9867 30.72 
5 0.9102 20.15 0.9784 26.85 0.9790 26.81 0.9780 26.50 0.9831 28.15 0.9837 28.30 
6 0.8535 20.10 0.9561 26.35 0.9637 26.92 0.9653 26.87 0.9737 28.70 0.9777 28.98 
7 0.8068 13.25 0.9312 19.19 0.9595 21.07 0.9556 20.78 0.9637 21.95 0.9649 22.17 
8 0.9019 19.40 0.9693 24.95 0.9749 25.67 0.9740 25.54 0.9812 26.96 0.9833 27.20 
9 0.8885 20.19 0.9672 25.71 0.9690 25.81 0.9726 26.09 0.9784 27.70 0.9810 28.27 
10 0.9523 22.13 0.9848 27.44 0.9850 27.38 0.9859 27.52 0.9894 29.32 0.9894 29.41 
11 0.9031 20.20 0.9824 28.08 0.9809 27.64 0.9803 27.60 0.9861 29.37 0.9883 29.98 
12 0.9222 20.10 0.9673 24.52 0.9766 25.71 0.9744 25.43 0.9833 27.44 0.9834 27.45 
13 0.9462 22.09 0.9825 27.50 0.9854 27.98 0.9847 27.74 0.9861 30.30 0.9900 30.51 
14 0.9211 22.04 0.9781 27.24 0.9791 28.35 0.9821 28.09 0.9867 29.71 0.9883 29.87 
15 0.9061 21.21 0.9657 28.41 0.9759 28.08 0.9751 28.73 0.9810 30.76 0.9820 31.09 

Table 2   

Non-parametric ANOVA performed on the values in table 1 

Source of variance Sum of squares Degrees of freedom Mean square F p 

Total 35,150 74 475   
Between images 19,934 14 1424   

Between methods 12,020 4 3005 52.65 2.45E-18 
Residual  3,196 56 57   
 
The ANOVA’s residual allows us to perform a post-hoc, multiple mean 

comparison test for further classifying the results. The mean ranks computed for 
each method over the 75 VW-SSIM measurements included in Table 1, are: 
RCAT = 23.07, RCED = 29.80, RTSC = 31.20, RSYM = 50.07, RASY = 55.87. A classical 
Bonferroni statistical test, computed at a 0.05 level of significance, yields a critical 
value for the multiple means comparison test equal to 5.52 and we may thus 
conclude that the proposed method outperforms all the other considered methods.  
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The correspondence between the VW-SSIM measure and the visual quality 
of the results is shown in Fig. 1 for an image included in the experimental set.  

     

     

Fig. 1 – Results on computer 
generated images. First line, from 

left to right: degraded image  
(VW-SSIM = 0.8881); Processed 
image using eq. (7), VW-SSIM = 
= 0.9767). Second line, from left 

to right: processed image using the 
symmetrical filter (VW-SSIM = 

= 0.9835), processed image using 
the asymmetrical filter  
(VW-SSIM = 0.9876). 

 

The poorest result among the best 3 classified methods is obtained by the 
Tschumperlé-Deriche filter and it due to the fact that, despite being specifically 
designed to preserve curved structures, noise is filtered out only for large diffusion 
times  inducing dissipative effects on edges. Our symmetrical filter performs 
significantly better in eliminating noise and limiting junction and corner 
modifications by slowing down or inverting deliberately the smoothing process in 
these regions. The better score obtained by the asymmetrical version of the filter is 
due to the fact that on asymmetric image patterns, by considering semi-
differentiability on the positive sense of the diffusion axis, the filter’s smoothing 
action is performed away from this type of discontinuities. On edges, the filter acts 
symmetrically and retains some parasite local minima of the luminance function 
due to noise; this is due to the formulation of the filter but we judge that the result 
is visually better, in correspondence with the quantitative indications. 

The new filter can be applied whenever junction, corner and edge 
information preservation is important. Fig. 2 shows a comparative result obtained 
in ancient digital engraving restoration tasks. For the same set of parameters the 
proposed method better preserves relevant structures than its symmetric 
counterpart. Finally, in Fig. 3 we show comparative results between the proposed 
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method and non-PDE state-of-the-art methods in denoising the standard fingerprint 
image in an additive Gaussian noise scenario (σ = 50) [19]. 

         
Fig. 2 – Results on real images. From left to right: original image, image processed using the 

original formulation of the filter; image processed using the proposed  method.  

        
Fig. 3 – Results on denoising standard images. From left to right: BM3D [17] result 
(PSNR = 24.36 dB), BLS-GSM [18] result (PSNR = 23.29dB), result using eq. (9) 

(PSNR = 23.91dB). 

Although the global PSNR value is higher for the BM3D method, by acting 
locally, our PDE retains better fine scale details and outperforms the BLS-GSM 
method. We observed the same behavior for this image on the whole range of 
Gaussian noise variances (σ2) indicated in [19]; the mean PSNR value for BM3D is 
27.70 dB, for BLS-GSM is 27.03 dB whilst for our method we obtained 27.16 dB. 
For BM3D and BLS-GSM we used the author’s Matlab code with σ as parameter. 

4. CONCLUSIONS 

The paper proposes an efficient image restoration and enhancement approach 
based on the PDE  framework and evolved orientation estimation techniques. The 
main novelty of the filter consists in considering asymmetric information in 
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characterizing and handling corners and junctions. We have shown that the new 
filter outperforms other classical and recent PDE methods. Further work will adapt 
the model for coping also with images composed of non-oriented patterns. 
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