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This paper proposes a novel denoising method for polarimetric synthetic aperture radar (PolSAR) image preprocessing tasks 
with integration and applications for texture-like land images classification tasks. The method is developed using the partial 
differential equations framework and employs a multi-polarimetric tensor to capture the geometry of fully polarimetric PolSAR 
data. The filtering intensity is modulated by the multiplicative gradient norm computed on the total scattered power. The 
method has good texture preservation properties and it is integrated on a PolSAR image classification chain providing good 
recognition accuracy rates. Visual results on real PolSAR data of maritime pine forests stands are also provided for showing its 
effectiveness. 
 

1. INTRODUCTION 

Airborne or spaceborne synthetic aperture radar (SAR) 
became nowadays one of the preferred tools for providing 
high resolution remote sensing images, being able to 
capture information irrespective of the weather conditions 
or of the day or night acquiring conditions. Operating in 
side-looking mode, such devices are able to capture the 
roughness of monitored terrains or oceans with spatial 
resolution ranging from centimeters to tenths of meters. 
SAR imaging devices can work and exploit multi-channel 
operation mode using techniques such as polarimetry and 
interferometry, or combinations of them, to provide rich 
and detailed information about the monitored area. 

In this work we will refer only to polarimetric SAR 
(PolSAR) data obtained using horizontal and vertical 
polarized electromagnetic waves which are transmitted using 
active antennas placed on a moving platform. Reception 
antennas are used to record the polarimetric signature of the 
targets through the backscattered radiation, possibly 
repolarized. Such systems are capable of capturing texture-
like, fine structure information, size and shape characterizing 
the targets within a resolution cell [1]. However, since the 
position of the scatterers within a cell varies, the received 
waves are coherent in frequency but not in phase, causing 
pixel-to-pixel variations in intensity, known as speckle. 
This type of noise has been shown to be multiplicative in 
nature and to have a negative impact on the accuracy of 
subsequent image segmentation or classification tasks [2].  

A lot of methods for speckle reduction have been 
proposed recently in the literature. These methods are based 
on various mathematical formalisms ranging from adaptive 
weighting on oriented sliding windows [3, 4], region 
growing [5], non-local means and non-local neighborhoods 
[6–8], wavelet transforms [9], partial differential equations 
(PDE) [10–13]. Irrespective of the underlying mathematics, 
all these methods are conceived to eliminate speckle noise 
through local or non-local averaging operations, whilst 
preserving or even enhancing the high frequency important 
information such as edges and junctions. 

Terrain classification is one of the main applications for 
PolSAR imaging allowing for subsequent analysis and 
interpretation steps for the rapidly accumulating data. For 

PolSAR data, most of these approaches are extended from 
the techniques developed for optical images and rely on 
descriptive statistics or on statistical models to capture 
textural and/or polarimetric information [14], without 
considering the data filtering step as a necessary prior for 
increased robustness. 

The paper we are proposing extends the work in [12], 
giving full implementation details and studies its integration 
in a PolSAR image classification chain that exploits 
textural and polarimetric information for classifying filtered 
PolSAR data representing maritime pine tree forest stands 
of different ages.     

The paper is organized as follows. In Section 2 we present 
our PDE-based filtering approach, its theoretical properties, 
numerical and implementation details. Section 3 introduces 
a classification framework for PolSAR images operating on 
the filtered data and using descriptive statistics extracted 
from a texture analysis step. Section 4 is dedicated to the 
experimental validation and present classification results on a 
real L band PolSAR image composed of maritime pine forest 
stands of different ages. The final section presents the 
conclusions of our work. 

2. DIRECTIONAL DIFFUSION-BASED SPECKLE 
NOISE FILTERING 

2.1. CONTINOUS MODEL 

The PDE-based filtering approach that we are proposing 
operates on the polarimetric covariance matrix [3]. This 
matrix captures in each pixel the complex scattered 
amplitudes of the received PolSAR electromagnetic waves 
using horizontal (H) and vertical polarizations (V): 
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In (1) the first index denotes the received wave polarization 
state, the second index stands for the polarization of a 
transmitted wave and * indicates complex conjugation. We 
only consider here a reciprocal transmission medium 
(SHV=SVH). Using (1), polarimetric data is represented by a 
set of polarimetric covariance matrices that depend on the 
spatial coordinates. For easing notations the spatial 
dependency has been dropped in (1). 

Our PDE is derived to act on the elements (Cij) of the 
covariance matrix following the principles for PolSAR data 
filtering introduced by Lee in [3]: independent filtering of 
each element of the covariance matrix (co-polar SHH, SVV, 
cross-polar SHV) for avoiding crosstalk between channels, 
use of adaptive operators for feature preservation on each 
channel. 

We set our method to use a superposition of one-
dimensional (1D) orthogonal diffusion processes acting on 
directions defined by a common geometry imposed through 
a multi-polarimetric structure tensor: 
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that captures and integrates in a 2 × 2 symmetric matrix the 
variations occurring in all the polarimetric channels. A 
component-wise convolution with a Gaussian function of 
standard deviation ρ is used to increase the robustness of 
this Di Zenzo driven approach [15] with respect to noise. 
The matrix in (2) is semi-positive definite, having eigenvectors 
pointing in the mean direction of the gradient vectors (v) 
and in the orthogonal, maximum homogeneity direction (u). 

For a more efficient restoration of non-oriented regions, 
we further model in each pixel the orientation of the (u) 
vector as a stochastic process having as mean the associated 
orientation (θm) issued by the eigen-analysis:  
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with ),( mθθΔ denoting the angular difference between the 
angles θ and mθ , computed using the classic angle doubling 
procedure [16]. σθ is a parameter of the method and we 
choose to related it to the normalized value of the difference 
between the eigenvalues of (2) through a multiplicative 
parameter α: 
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The discussion derived in [13] for the scalar image case 
holds also for the amplitudes of the PolSAR data. On 
oriented regions the orientation (θ) of the eigenvector u is 
the one issued by the multi-polarimetric tensor whereas on 
non-oriented regions θ takes random values drawn from a 
circular distribution. 

Non-linear diffusion processes are usually designed to 
favor intra-region smoothing and to penalize inter-region 
smoothing. This effect is accomplished by using diffusivity 
functions taking as arguments the outputs of an edge 
detection operation. The choice of the edge detector itself 
for the multiplicative noise case proves to be problematic 
since the noise value depends on the signal amplitude. 
Based on recent work in edge detection [17], we use the 
multiplicative gradient operator to modulate the diffusion 
intensity along the two axes defining the diffusion 
geometry computed as described above. The operator is 
shown in [17] to provide better results than the 
instantaneous coefficient of variation, especially for high 
noise conditions and real images having a complex content. 
For a given 2D gray scale image (U) the multiplicative 
gradient T[ ( ), ( )]x yU U Uη∇ = η η  is computed using the 
following formulas [13]: 
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We show in Fig. 1 the result of an edge detection 
operation performed on the intensity of the SHH complex 
scattering element. All the images in Fig. 1 have been 
scaled in the 0–255 gray level range for a better visualization. 
As it can be easily noticed, in Fig. 1c the multiplicative 
gradient magnitude is significantly lower in homogeneous 
areas than in Fig. 1b (instantaneous coefficient of variation) 
and still high along the edges. 

For capturing the features of a PolSAR image contained 
in all the polarimetric channels, we design our method to 
employ the previously described multiplicative gradient-based 
edge detection on the span image, which represents a weighted 
average of the intensities of the scattering coefficients [3, 12]: 

    
           a) b)                       c) 

Fig. 1 – Edge detectors on a real band L image (SHH channel amplitude); a) original image (scaled down to 10 % of the initial size);                    
b) Instantaneous coefficient of variation (ICOV); c) multiplicative gradient norm. 
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The continuous form of the PDE filter that accounts for 
all the above imposed properties is: 
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with different diffusion functions along the axes describing 
the geometry of the diffusion process acting on the 
elements of the polarimetric scattering matrix. These 
functions are: 
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with the Ku and Kv diffusion thresholds as parameters for 
our method. The choice is based on the experimental 
evaluation of the parameters choice for anisotropic 
diffusion filtering carried out in [18]. Diffusion processes 
driven by such functions favor high contrast edges with 
respect to low contrast ones, allowing on the same time 
adaptive smoothing along the maximum homogeneity axis 
(u). The filter corresponds to the non-regularized form of 
the PDE we proposed in [12]. The choice is motivated by 
the fact that we derive our filter to act for high resolution 
PolSAR images (1 meter) and we design it for avoiding 
pre-smoothing effects that could filter out details.  

2.2. NUMERICAL APPROXIMATION SCHEME 

To solve numerically equation (7) we assume a classic 
discretization of the time (observation scale) and the spatial 
coordinates: t = ndt, x = ih, y = jh, as in [12] and [19]. 
Evaluation of the right hand side of (7) is done on a moving 
orthonormal basis, defined in each pixel by the two axes v 
and u, computed as defined in equations (2) to (4). 
Assuming a similar spatial discretization along these axes, 
the numerical approximation scheme needs subpixel 
resolution as shown in Fig. 2 for a generic 2D function 
U(x,y,t )= U(ih, jh, ndt) = Ui,j

n. For easing up the notations 
we ignore in Fig.2 the time dependence of this function. We 
employ two biquadratic interpolations for computing these 
values on each axis by considering, respectively, 
U(x,y,t)=Cij(x,y,t) for the system of PDEs governing the 
time evolution of each scattering coefficient (7). 

 

 

Fig. 2 – Quantities involved in the numerical approximation scheme 
along the u axis for a generic 2D function U(x,y,t). 

Based on these quantities we then compute the directional 
derivatives by using forward and backward difference 
operators along the u and v axes. For the generic 2D 
function these are: 
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and, with these notations, the right hand side of (7) can be 
discretized as follows: 
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Evaluation of (10) involves evaluation of the diffusion 
functions at the middle of the discrete intervals [m,m+1], 
[m–1, m], [n, n+1] and [n, n+1]. We compute these values 
by using simple arithmetic means between the already 
computed values of the span’s multiplicative gradient at 
integer discrete coordinates m and n. These approximations 
lead to: 
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The final approximation of the right hand side term in 
equation (6) is: 
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The left hand side of (6) is approximated using classic 
forward time difference using a time step dt. The final 
approximation scheme that takes into account also the time 
discretization and the time dependence is: 
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2.3. PARAMETERS 

The method has the following parameters: the observation 
scale t, the standard deviation of the Gaussian kernel used 
for orientation estimation (2) (ρ), the two diffusion thresholds 
(Ku,Kv) and the standard deviation for the stochastic process 
that models the orientation estimation process ( θσ ).  

The parameter ρ gives the size of the orientation estimation 
window. For the PolSAR image classification chain we used 
values between 2 and 3, leading to orientation window 
estimation sizes from 13 × 13 to 19 × 19 pixels. 
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The threshold parameter Kv is set to be time dependent 
and equal to a given percentage β of the integral value of 
the histogram [19] associated to the multiplicative gradient 
norm computed at that scale. As in [12], we set, through a 
multiplicative constant (α), the threshold Ku to depend 
linearly on Kv. The best classification results were obtained 
for values of β between 0.2 and 0.75, allowing for efficient 
edge and texture preservation. As far as α is concerned, 
values between 1.5 and 2 proved to be the most suitable for 
eliminating noise and preserving junctions. The standard 
deviation for the stochastic process associated with the 
orientation estimation process has been set as indicated in 
[13]. Low values (0–10) lead to less efficient restoration of 
regions not having a dominant orientation. 

3. POLSAR IMAGE CLASSIFICATION 
USING TEXTURE FEATURES 

The preliminary results in [12] showed that the 
regularized form of our method achieves very good results 
on denoising real and simulated PolSAR images degraded 
by speckle noise, comparing favorably with classic and 
recent despeckling approaches. Based on these results, we 
propose the integration of the method in a PolSAR image 
classification chain that employs the filtered PolSAR data 
for the derivation of texture features based on the gray level 
co-occurrence matrix and for classification using a distance 
based classifier. The image classification chain is the one 
shown in Fig. 3 and it is an extension of the solution proposed 
in [20] for the classification of maritime pine trees using 
panchromatic images, allowing for integration of a denoising 
step and for global validation of our novel filtering approach. 

For the speckle filtering step we consider the method 
proposed in Section 2, with parameters tuned to keep a 
balance between noise elimination and texture preservation. 
The classification workflow filters the intensities of the 
scattering coefficients (i.e. the diagonal terms of the 
polarimetric covariance matrix (1)), extracts texture features 
from the filtered intensity values and classifies the underlying 

images based on a distance computation using a k nearest 
neighbor (kNN) approach. 

In the texture analysis step we employ the classic gray-
level co-occurrence matrix (GLCM) [21] that allows for 
extraction of second-order texture features: 

1 if and
GLCM ( , ) .

0 otherwised
x y

I(x,y) a I(x dx,y dy) b
a b

= + + =⎧= ⎨
⎩

∑∑  (14) 

In (14), I(x,y) is the gray level of the current pixel and 
I(x+dx,y+dy) is the gray level of a neighboring pixel placed 
at a distance (dx,dy). The GLCM matrix is normalized by 
the number of pixels of the patches. In order to reduce the 
dimensionality of the classification process, to eliminate 
redundant information provided by the various GLCM 
measures, a reduced set of textural features is usually extracted 
from the matrix. Based on the work carried out in [20] for 
photometric images and in [22] for radar images, we employ 
for the PolSAR image case a concatenation of four texture 
features, namely the homogeneity, entropy, correlation and 
the mean gray level, averaged in four directions in the 2D 
image plane and normalized. 

The last step uses for kNN classification the texture 
descriptors vectors and the Mahalanobis distance, the later 
allowing to account for the possible correlation among the 
texture feature components of these vectors. 

The proposed workflow is a general one, allowing for 
integration of different speckle denoising methods. We 
evaluate the efficiency of different filters in the next section. 

4. RESULTS AND DISCUSSION 

The image classification workflow in Fig.3 has been 
tested in a real scenario that aims to automatically classify 
fully polarimetric SAR images representing pine tree forest 
stands of different ages, captured during ONERA RAMSES 
campaign in 2004. The image has been previously annotated 
and contains 62 forest stands between 5 and 48 years old 
pine trees that are grouped into 4 classes: less than 10 years, 

`  
Fig.4 – Intensity of the SHH scattering coefficient for the Nezer region France (data acquired in 2004, scaled down to 8% of the initial size). 
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Fig.3 – PolSAR image classification chain using texture features extracted from the gray-level co-occurrence matrix of the filtered data. 
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Fig. 4 – Intensity of the SHH scattering coefficient for the Nezer region France (data acquired in 2004, scaled down to 8 % of the initial size). 
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between 11 and 20 years, between 21 and 30 years, more 
than 30 years. Figure 4 shows the intensity of the noisy SHH 
scattering coefficient of the considered region, scaled on 
256 gray levels. 

We tested the proposed classification workflow by 
considering baseline filters such as box car, Gaussian 
convolution and special filters derived to handle the 
multiplicative nature of the speckle noise: the polarimetric 
Lee filter, the speckle reducing anisotropic diffusion method 
(SRAD) and our proposed method. 

The different classes have been randomly partitioned into 
training and test classes (ratio 0.5) and 100 runs for different 
partitions have been tested in order to assess the accuracy 
of the classification process.  

The best results among the three polarization channels 
for each filtering method are reported in Table 1. 

Table 1 
Classification accuracy for different filtering methods 

Method Polarimetric channel 
Classification 

accuracy rate [%] 

Unfiltered image 2
HHS  

88.03 ± 4.25 
 

2
HHS  (σ = 0.5) 

87.00 ± 4.06 

Gaussian filter 
2

HHS (σ = 0.75) 
84.75 ± 4.00 

2
HHS  (3×3 pixels) 

85.59 ± 4.14 

Box car filter 
2

HHS  (5×5 pixels) 
84.22 ± 3.98 

Polarimetric Lee 
filter[3] 

2
HVS  

87.34 ±3.88 

2
HHS (t = 0.25) 

86.41 ±6.19 

Speckle reducing 
anisotropic diffusion 

[9] 
2

HHS (t = 1.0) 
80.69 ± 5.01 

SAR-BM3D  (SAR 
block-matching 3D 

algorithm) [8] 

2
HHS  

87.50 ± 4.00 

2
HHS (t = 1.0) 

89.75 ± 4.00 

Proposed approach 
2

HHS (t = 1.5) 
86.71 ± 5.24 

We used a cumulative distribution function-based 
quantization of the GLCM matrix on 256 gray levels and 
variable distance (1÷4). 

The reported values are averages taken on the 4 
directions of the numerical grid for insuring invariance with 
respect to orientation of the forest stands. For all the filters 
allowing a modulation of the smoothing intensity process 
two values are indicated. In the case of the Gaussian filter 
and the Box car filter these values correspond to the 
smoothing window size; for the SRAD and our method we 
report values at 2 observation scales (t). We also studied the 
influence of different k values for the kNN classifier, 
allowing it to vary. No significant differences were found 
for values between 3 and 5. For higher values the accuracy 
rate decreases significantly. 

The GLCM classification framework shown in Fig. 3 
proves to be robust even if the PolSAR data is not filtered. 
This is mainly due to the quantization operation that lowers 
the influence of the noise. 

The Gaussian and the box car filters induce smoothing 
operations that are attenuating the influence of the noise 
but, on the same time, they are destroying the high 
frequency content associated to high resolution PolSAR 
images and depicting important textural forest properties, 
therefore, lowering the classification accuracy. 

Both the polarimetric Lee filter and the speckle reducing 
anisotropic filter are modulating the intensity of the 
underlying smoothing processes by using measures (i.e. the 
instantaneous coefficient of variation) adapted to 
characterize and quantify the influence of the speckle. 
However, neither of these filters is capable of preserving 
fine texture information, leading to a slight decrease of the 
accuracy rate with respect to the unfiltered case.  

Filtering the noisy data with the SAR-BM3D method 
lowers also the accuracy rate of the classification system. 
This is due to the method’s inability to preserve texture 
information, as it can be seen in Fig. 5b. The result was 
produced with the authors own Matlab implementation 
[23], using the default values for all the parameters. 

The filtering method proposed in Section 2 preprocesses 
the data by keeping a balance between noise elimination 
and texture preservation. The parameters were tuned for 
such an effect (α = 1.5, β = 0.2), leading to the best 
accuracy rate in Table 1. We show in Fig. 5 details for the 
filtered intensity of the SHH polarimetric channel using the 
SAR-BM3D approach and our method. 

 

   

a) b) c) 

Fig. 5 – Zoomed details for filtered SHH channel intensity); a) original image; b) SAR BM3D result; c) result using our approach. 
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Fig. 6 – Intensity of the SHH scattering coefficient filtered for better visualization 

with our method (scaled down to 8 % of the initial size). 

As it can be seen, our approach produces results in which 
texture information is preserved through anisotropic, directional 
adaptive smoothing. Nevertheless, parameters can be tuned 
in order to induce a higher intensity for the smoothing process. 
This corresponds to higher values for the parameters α and 
β and to coarser observation scales (t). We show in Fig. 6 
such a result. With respect to the unfiltered image (Fig. 4), 
contrast is enhanced, the price being paid is more loss of 
texture information and classification accuracy.  

5. CONCLUSIONS 

The paper proposes a novel directional diffusion filter for 
speckle noise removal that degrades the quality of polarimetric 
SAR images. The method is developed to integrate 
polarimetric information in the definition of a common 
diffusion geometry. The smoothing intensity on each channel 
is modulated by the multiplicative gradient norm, computed 
based on the total power of the scattered electromagnetic 
radiation. The method is integrated in a PolSAR image 
classification chain and has good results in terms of the 
classification accuracy. Its parameters can be also tuned for 
PolSAR image enhancement or restoration tasks. 

Future work will be devoted for the integration of the 
filtered polarimetric data in a classification system that will 
exploit also information of the cross-polarized, non-diagonal 
terms of the polarimetric covariance matrix. 
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