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In applications that involve magnetizable media and moving bodies, the integral 
methods used for electromagnetic field computation have some major advantages in 
comparison with the differential methods. Polarization fixed point method allows the 
use of the eddy current integral formulation for computation of 3D electromagnetic 
field in nonlinear media. The integral equation numerical solution is obtained 
employing Galerkin procedures and using first order edge elements. By imposing the 
topological gauge condition the active unknowns are associated only with the cotree 
edges. A polyhedral mesh is used to discretize the polarization field. For the field of the 
current density a different discretization mesh can be employed. In domains with 
moving bodies only magnetizable and conductive media are discretized, their meshes 
remains unchanged and only the free term is reevaluated at each time step.  

1. INTRODUCTION 

The eddy current computation procedures are often based on finite element 
methods [1]. In this case the computation of problems with moving bodies 
encounters some difficulties. Most frequently, the rotation movement is taken into 
account (e.g. electrical machines) by employing a cylindrical separation surface for 
subdomains in relative motion located in the airgap area [2]. The mesh step on this 
surface is regular and it matches the adopted time step. For an arbitrary motion, the 
mesh should be deformed or rebuild and all the matrices have to be reevaluated at 
each time step. 

In 1995, the famous professor C.W. Trowbridge presented the paper 
Computing Electromagnetic Field for Research and Industry: major achievements 
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and future friends at the COMPUMAG'95 conference in Berlin and appreciated 
that the future research direction in computation of electromagnetic fields will use 
an integral approach in the treatment of the domains with rigid moving bodies. In 
2D problems the eddy current integral formulation is a simple and efficient 
procedure for solving the electromagnetic field problem because we only have a 
scalar unknown [3]. 3D problems are more complicated because the current density 
is a vector unknown with zero divergence and the integral equation contains the 
gradient of an unknown scalar function. Albanese and Rubinacci [4] solved these 
two problems considering the edge elements shape functions iN  for electric 
potential vector T. The current density can be written as 
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which verifies zero convergence condition. The unknowns are associated only with 
the internal edges branches. The boundary condition 0=⋅nJ  is fulfilled by 
imposing zero values for the boundary edge elements. Projecting the integral 
equation on the functions kN×∇ , the component that contains the scalar function 
gradient vanishes. For domains with rigid bodies in motion the Faraday’s law in 
local coordinate systems is used, avoiding the term )( vB××∇ [5]. Unfortunately, 
the integral formulations for eddy current problems can be employed only for 
linear and homogeneous unbounded media.  

The iterative polarization method [6, 7] replaces the nonlinear media with a 
fictive linear one and an additive term, having a magnetic polarization nature, 
which is corrected by the magnetic flux density at each iteration. The magnetic 
permeability remains unchanged during the iteration and can be chosen to be 
constant in the entire computing domain [8]. By using this method the integral 
formulations for eddy current problems can be extended to nonlinear media, the 
magnetic polarization contributing only to the right side term [3, 9–10]. 

This paper proposes an integral formulation for eddy current problems in 3D 
domains with permanent magnets, ferromagnetic media and moving bodies. The 
magnetic forces, that depend on the ferromagnetic media nonlinearities, permanent 
magnets and eddy current, are efficiently computed. A tetrahedral mesh and first 
order edge elements are used for the current density discretization. The active 
unknowns are only those associated with the internal cotree edges. The tree-cotree 
spanning starts from the boundary edges. The polarization field discretization is 
preformed using a polyhedral mesh (which may be different from the tetrahedral 
one of the current density) and volume elements. In each polyhedron an average 
value of magnetic flux is considered. 
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2. THE EDDY CURRENT INTEGRAL FORMULATION 

The eddy current integral equation is 
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where ρ  is the resistivity, 0J  is the imposed current density in the nonconductive 
domain 0Ω , 0M  is the magnetization in the domains 

0MΩ with permanent 

magnets, FM is the magnetization in the ferromagnetic domains FΩ , which is 
iteratively corrected using the fixed point polarization method. The conductive 
domain boundary condition is given by 0=⋅nJ . 

3. THE SPATIAL DISCRETIZATION AND THE SOLUTION  
OF THE INTEGRAL EQUATION  

The electric vector potential T is written as a linear combination of iN  
vector shape functions and the current density results as presented in (1). By 
projecting the equation (2) on the functions kN×∇ , the following system of 
equations is obtained 
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where the entries of the matrices {R}, {L} and ][Φ are 
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and the unknown term is [I] = T
21 ),,,( nααα … . By projecting the equation (2) on 

the functions kN×∇ , the term containing V∇  vanishes. 

4. THE COTREE EDGE ELEMENTS  

The most convenient shape functions choice is that of edge elements [4]. We 
consider a tree-cotree spanning of the entire tetrahedral mesh [11]. It’s obvious that 
the flux of J across any elementary facets is given by the line integral of the vector 
potential along the edges surrounding the facet. We can add any particular values 
to the tree edges if we add values on the cotree edges which verify Kirchhoff's 
second law. Therefore we nullify all tree edge values, and so, the uniqueness of the 
potential T along the edges is insured. As a result, the active unknowns are only the 

iα  terms that correspond to the inner cotree edge elements. The boundary 
condition is fulfilled by imposing zero value of the boundary edge elements. For a 
better conditioning of the equation system matrices it is recommended to begin the 
tree-cotree spanning with the boundary edges. 

When the first order edge elements are used in the tetrahedral mesh, the 
entries of matrices {R}, {L} from relation (5) become 
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where }{}{ kip ∩∈  is the index of the pω  subdomain which contains the edges i 
and k, respectively, and 

piN×∇ is the value of iN×∇  in pω , 
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where }{ip∈  are the indexes of the subdomains containing the edge i. Using 
Gauss formulas the double volume integral in (8) becomes 
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The elements of the free vector [ ]Φ  from (6) can be written as 
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ferromagnetic and permanent magnet domains, considered to be constant over each 
subdomain lω , Mn the number of subdomains in magnetizable media, 
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5. POLARIZATION FIXED POINT METHOD 

The nonlinear relationship H=F(B) is replaced by )( FMHB +µ= , where 
µ can be chosen to be the permeability of free space 0µ  and the magnetization 

FM  is iteratively corrected as a function of B 

)())(( BBBM GF =µ−=F . (10) 

For the spatial discretization of the magnetization a polyhedral mesh is 
defined in ferromagnetic bodies and volume elements are employed. If the 
ferromagnetic domain is also a conductive domain, we have two distinct 
discretization meshes: a tetrahedral one for the current density and a hexahedral 
one for the magnetization. Initially an arbitrarily value )0(M  is chosen. Assuming 

)(kM  has known value at iteration k, we can calculate the value for the current 
density from (4), and then calculate the average value for the flux density B  using 

MJ BBB ~~~
+= , where JB~  is the average flux density due to eddy current density J 

and MB~ is the average flux density due to magnetization FM  in ferromagnetic 
domain and magnetization M0 in permanent magnets 
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Magnetization M has a nonlinear dependence and it’s iteratively corrected 
with (10). When )1()( −− n

F
n

F MM  is enough small, the convergence is achieved 

and we stop the iterative process. 

6. ANALYSIS OF STRUCTURES WITH MOVING BODIES  

The time discretization is performed using a Crank Nicholson method. 
Starting with the eddy current vector ][ 0I  initialized to zero at time step 0t , we 
compute the entries of matrices {R}, {L} and the free vector term ][Φ  using the 
next iterative procedure: 

Time step 1t : the moving bodies come into 1t  time step position, velocity 
being known. 

a)  The vector ][ )0(
1Φ  is computed at 1t  time step, where M has the 0t  time 

step value )0(
1M . In ferromagnetic media we assume for simplicity zero initial 

value for magnetization 0)0(
1
=FM . The field sources are imposed current density 

and magnetization M0 from permanent magnets. 
b)  The vector ][ )1(

1I  is computed by solving the following system of 
equations  
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This procedure is repeated, resulting ][ )2(
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1B , )2(
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1Φ . The iterative 

correction will run until convergence is achieved ( )1()( −− n
F
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enough), then we will move to the next time step. 
Time step 2t : the moving bodies come into 2t  time step position. 

a) The vector ][ )0(
2Φ  is computed at 2t  time step, where M has the 1t  time 

step value )0(
2M = )(

1
nM . 

b) The vector ][ )1(
2I  is computed by solving the following system of 

equations 
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c) The average value for flux density )1(
2B , magnetization value )1(

2M , and 

the vector free term’s new value ][ )1(
2Φ  are computed. 

The procedure is repeated, resulting ][ )2(
2I , )2(

2B , )2(
2M , ][ )2(

2Φ . The iterative 

correction will run until convergence is achieved ( )1()( −− n
F

n
F MM  is small 

enough), then we move to the next time step. 
The presented iterations are repeated for all steps covering the studied time 

interval. 

7. THE ELECTROMAGNETIC FORCES COMPUTATION 

The force computation using the Maxwell stress tensor implies its integration 
over a closed surface ∑  which surrounds the conductive domain CΩ . The 
integrating surface ∑  must be oriented to the outside domain on which the force is 
exerted and for the numerical approach this surface should be subdivided in a 
discretization mesh who can take any surface form. 

The total force is given by ( )∫
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numerically evaluated by taking into account the flux density iB  computed in the 
weight center of the surface ∑  facets, 
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the flux density given by the current density J and by the magnetization M, 
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8. ILLUSTRATIVE EXAMPLE 

We study the problem of a moving permanent magnet over a 
nonferromagnetic conducting plate. The plate dimensions are 10-1×10-1 m, is placed 
in xOy plane and its thickness is 5·10-3 m. The plate is made of aluminum with a 
resistivity of 2.6·10-8 Ωm. Under the aluminum conductive plate is a nonconductive 
ferromagnetic plate, which has the same size as the conductive plate. Its B-H 
characteristic is presented in Fig. 1.  The distance between the two plates is 5·10-3 
m. The permanent magnet dimensions are 5·10-2×5·10-2 m in xOy plane and the 
thickness is 10-1 m and it is moving with an imposed velocity v = 1.25 m/s along z 
direction, being driven away from the conductive plate. The magnet has an 
imposed magnetization 0M  = 7.95·105 A/m along the z direction. The entire 
computation domain will have a fictitious permeability chosen to be the 
permeability of free space 0µ . 

The discretization meshes are shown in Fig. 2, where the conductive plate 
was divided in 450 tetrahedral elements resulting a total of 505 active edges, the 
ferromagnetic plate was divided in 72 hexahedrons and the permanent magnet is 
divided only on its surface as 90 rectangular subdomains. Using a time step of 

1=∆t ms the eddy current density field increases in time achieving its maximum 
value at 3 ms and then decreases with the movement of the permanent magnet. The 
eddy current density distribution acquired after 10 time steps is plotted in Fig. 3. 
The arrows give the size and direction of the density current vector in the weight 
centers of each tetrahedral element. 
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Fig. 1 – B-H characteristic of the ferromagnetic 
plate. 

Fig. 2 – Tetrahedral, hexahedral and  rectangular 
discretization mesh. 
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Fig. 3 – Eddy current distribution at t = 10 ms. 
Fig. 4 – The force along z direction depending on the 

distance between conductive plate and permanent 
magnet. 

The total force acting on the conductive plate is computed for each time step. 
The force components along x and y directions are negligible. The force along z 
direction reflects the permanent magnet attraction and the ferromagnetic plate 
rejection. The attraction force versus the distance between the conductive plate and 
the permanent magnet is presented in Fig. 4. The force of attraction between the 
conductive plate and permanent magnet has the same value but opposite direction 
to the repelling force between the conductive plate and ferromagnetic plate. 

9. CONCLUSIONS 

The analysis of the quasi-stationary electromagnetic field involves the 
computation of an eddy current problem which is very efficiently solved using 
integral methods. Such methods have become ever more popular in 
electromagnetic field computation, due to the following advantages: the small size 
of the system of equations, does not require the introduction of an artificial 
boundary and allows parallel programming. The polarization fixed point iterative 
method treatment of nonlinear media allows the use of eddy currents integral 
formulation. The matrices of the equation system remains unchanged during the 
iterative process, only free vector terms are reevaluated. The advantages become 
more obvious when the integral methods are used in problems that involve moving 
bodies or ferromagnetic media: only the conductive and ferromagnetic domains are 
meshed (no mesh in the air), during the movement some entries of the matrices of 
the equations system remains unchanged. 

By imposing the topological gauge condition and tree-cotree spanning we 
obtain a substantial decrease in number of unknowns that is reflected in a small 
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computation effort and usage of low memory resources. In order to reduce the 
computation time even more we use Gaussian formulas which have changed the 
volume-volume integral operator (that shows up in matrices and vector system of 
equations) in a surface-surface integral operator. 
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